Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Investigations of improved cooling effectiveness for ramp film cooling with compound angle film cooling jets

Investigations of improved cooling effectiveness for ramp film cooling with compound angle film... This paper aims to investigate the film cooling effectiveness (FCE) and mixing flow characteristics of the flat surface ramp model integrated with a compound angled film cooling jet.Design/methodology/approachThree-dimensional numerical simulation is performed on a flat surface ramp model with Reynolds Averaged Navier-Stokes approach using a finite volume solver. The tested model has a fixed ramp angle of 24° and a ramp width of two times the diameter of the film cooling hole. The coolant air is injected at 30° along the freestream direction. Three different film hole compound angles oriented to freestream direction at 0°, 90° and 180° were investigated for their performance on-ramp film cooling. The tested blowing ratios (BRs) are in the range of 0.9–2.0.FindingsThe film hole oriented at a compound angle of 180° has improved the area-averaged FCE on the ramp test surface by 86.74% at a mid-BR of 1.4% and 318.75% at higher BRs of 2.0. The 180° film hole compound angle has also produced higher local and spanwise averaged FCE on the ramp test surface.Originality/valueAccording to the authors’ knowledge, this study is the first of its kind to investigate the ramp film cooling with a compound angle film cooling hole. The improved ramp model with a 180° film hole compound angle can be effectively applied for the end-wall surfaces of gas turbine film cooling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Investigations of improved cooling effectiveness for ramp film cooling with compound angle film cooling jets

Loading next page...
 
/lp/emerald-publishing/investigations-of-improved-cooling-effectiveness-for-ramp-film-cooling-7155WC7mCi
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1748-8842
DOI
10.1108/aeat-05-2020-0082
Publisher site
See Article on Publisher Site

Abstract

This paper aims to investigate the film cooling effectiveness (FCE) and mixing flow characteristics of the flat surface ramp model integrated with a compound angled film cooling jet.Design/methodology/approachThree-dimensional numerical simulation is performed on a flat surface ramp model with Reynolds Averaged Navier-Stokes approach using a finite volume solver. The tested model has a fixed ramp angle of 24° and a ramp width of two times the diameter of the film cooling hole. The coolant air is injected at 30° along the freestream direction. Three different film hole compound angles oriented to freestream direction at 0°, 90° and 180° were investigated for their performance on-ramp film cooling. The tested blowing ratios (BRs) are in the range of 0.9–2.0.FindingsThe film hole oriented at a compound angle of 180° has improved the area-averaged FCE on the ramp test surface by 86.74% at a mid-BR of 1.4% and 318.75% at higher BRs of 2.0. The 180° film hole compound angle has also produced higher local and spanwise averaged FCE on the ramp test surface.Originality/valueAccording to the authors’ knowledge, this study is the first of its kind to investigate the ramp film cooling with a compound angle film cooling hole. The improved ramp model with a 180° film hole compound angle can be effectively applied for the end-wall surfaces of gas turbine film cooling.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: Aug 12, 2021

Keywords: Gas turbine; Blowing ratio; Film cooling effectiveness; Film hole compound angle; Mixing flow characteristics; Ramp film cooling

References