Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this study is to propose the use of a pre-deposition heating system for fused filament fabrication (FFF) as a means to enhance interlayer bonding by elevating the substrate temperature. The effects of the heating on thermal profile at the bonding interface and the mechanical properties of three-dimensional printed parts are investigated.Design/methodology/approachA 12-W laser head is integrated to a commercial printer as the pre-deposition heating system. The laser beam heats up substate before the deposition of a fresh filament. Effects of laser powers are investigated and the thermal profile is measured with thermocouple, infrared camera and finite element model. The correlation between the temperature at the bonding interface and the bonding quality is investigated by conducting tensile testing and neck width measurement with microscope.FindingsThe pre-deposition heating system is proven to be effective in enhancing the inter-layer strength in FFF parts. Tensile testing of specimens along build direction (Z) shows an increase of around 50% in ultimate strength. A linear relationship is observed between the pre-deposition temperature at bond interface and bonding strength. It is evident that elevating the pre-deposition temperature promotes interlayer polymer diffusion as shown by the increased neck width between layers.Originality/valueThermocouples that are sandwiched between layers are used to achieve accurate measurement of the interfacial temperature. The temperature profiles under pre-deposition heating are analyzed and correlated to the interlayer bonding strengths.
Rapid Prototyping Journal – Emerald Publishing
Published: Jan 2, 2023
Keywords: Additive manufacturing; Fused filament fabrication; Interlayer bonding; Interfacial temperature
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.