Investigation of the effect of V2O5 and Na2SO4 melted salts on thermal barrier coatings under cyclic conditions

Investigation of the effect of V2O5 and Na2SO4 melted salts on thermal barrier coatings under... PurposeThermal barrier coatings (TBCs), which are used in high temperature applications of gas turbines, are damaged due to fuels and airborne minerals under working conditions. Stable zirconia coatings, which are usually used as topcoat materials in TBCs, are damaged by interacting at high temperatures with elements such as vanadium and sulfur from low quality fuels. The purpose of this paper is to see the failure mechanism of TBC systems after hot corrosion damages.Design/methodology/approachCoNiCrAlY metallic bond coatings of TBC samples were produced by cold gas dynamic spray method which is a new trend production method and stabilized zirconia ceramic top coating was produced by atmospheric plasma spray method. In total, 50% by weight of V2O5 and 50% Na2SO4 salt mixtures were placed on TBC samples and subjected to hot corrosion test at 1000°C.FindingsHot corrosion behaviors of TBC samples were examined by scanning electron microscopy, elemental mapping analysis, energy dispersive X-ray spectrometry analysis and X-ray diffraction analysis. TBC samples were damaged at the end of 12-h cycles.Originality/valueThe paper provides to understand the mechanism of hot corrosion of TBCs with cold sprayed metallic bond coat. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Anti-Corrosion Methods and Materials Emerald Publishing

Investigation of the effect of V2O5 and Na2SO4 melted salts on thermal barrier coatings under cyclic conditions

Loading next page...
 
/lp/emerald-publishing/investigation-of-the-effect-of-v2o5-and-na2so4-melted-salts-on-thermal-y8GEeLX1hr
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0003-5599
DOI
10.1108/ACMM-12-2018-2042
Publisher site
See Article on Publisher Site

Abstract

PurposeThermal barrier coatings (TBCs), which are used in high temperature applications of gas turbines, are damaged due to fuels and airborne minerals under working conditions. Stable zirconia coatings, which are usually used as topcoat materials in TBCs, are damaged by interacting at high temperatures with elements such as vanadium and sulfur from low quality fuels. The purpose of this paper is to see the failure mechanism of TBC systems after hot corrosion damages.Design/methodology/approachCoNiCrAlY metallic bond coatings of TBC samples were produced by cold gas dynamic spray method which is a new trend production method and stabilized zirconia ceramic top coating was produced by atmospheric plasma spray method. In total, 50% by weight of V2O5 and 50% Na2SO4 salt mixtures were placed on TBC samples and subjected to hot corrosion test at 1000°C.FindingsHot corrosion behaviors of TBC samples were examined by scanning electron microscopy, elemental mapping analysis, energy dispersive X-ray spectrometry analysis and X-ray diffraction analysis. TBC samples were damaged at the end of 12-h cycles.Originality/valueThe paper provides to understand the mechanism of hot corrosion of TBCs with cold sprayed metallic bond coat.

Journal

Anti-Corrosion Methods and MaterialsEmerald Publishing

Published: Sep 2, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off