Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Investigation of load carriage capacity of journal bearings by surface texturing

Investigation of load carriage capacity of journal bearings by surface texturing Purpose – The purpose of this paper is to investigate and discuss the influence of the pattern, size and orientation of textures on journal bearing load carriage capacity. An important development in load carriage capacity of journal bearings can be obtained by forming regular surface structure in the form of threaded on their shaft surfaces. This is performed both theoretically and experimentally using shafts with textured (threaded) and untextured surfaces. Each screw thread can serve either as a micro‐hydrodynamic bearing in cases of full or mixed lubrication or as a micro reservoir for lubricant in cases of starved lubrication conditions. Design/methodology/approach – The pressure distribution and the load‐carrying capacity are predicted using feed forward architecture of neurons. The inputs to the neurons are a collection of experimental data. These data are used to train the network using the delta‐bar‐delta, batch‐backprop, backprop, and backprop‐rand algorithms. The proposed neural model outperforms the available experimental system in predicting the pressure as well as load‐carrying capacity. Findings – Theoretical models are developed using a neural network approach, and tests are performed, to investigate the potential of threaded textured surfaces in tribological components like mechanical seals, piston rings and journal bearings. In these tests, load carriage capacity is significantly increased with threaded textured shaft surfaces to the shafts with non‐textured surfaces. Originality/value – The paper discusses a new modelling scheme known as artificial neural networks. A neural network predictor has been employed to analyze the effects of shaft surface profiles in hydrodynamic lubrication of journal bearing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Lubrication and Tribology Emerald Publishing

Investigation of load carriage capacity of journal bearings by surface texturing

Industrial Lubrication and Tribology , Volume 61 (5): 10 – Aug 14, 2009

Loading next page...
 
/lp/emerald-publishing/investigation-of-load-carriage-capacity-of-journal-bearings-by-surface-lBjAuvNq70
Publisher
Emerald Publishing
Copyright
Copyright © 2009 Emerald Group Publishing Limited. All rights reserved.
ISSN
0036-8792
DOI
10.1108/00368790910976096
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to investigate and discuss the influence of the pattern, size and orientation of textures on journal bearing load carriage capacity. An important development in load carriage capacity of journal bearings can be obtained by forming regular surface structure in the form of threaded on their shaft surfaces. This is performed both theoretically and experimentally using shafts with textured (threaded) and untextured surfaces. Each screw thread can serve either as a micro‐hydrodynamic bearing in cases of full or mixed lubrication or as a micro reservoir for lubricant in cases of starved lubrication conditions. Design/methodology/approach – The pressure distribution and the load‐carrying capacity are predicted using feed forward architecture of neurons. The inputs to the neurons are a collection of experimental data. These data are used to train the network using the delta‐bar‐delta, batch‐backprop, backprop, and backprop‐rand algorithms. The proposed neural model outperforms the available experimental system in predicting the pressure as well as load‐carrying capacity. Findings – Theoretical models are developed using a neural network approach, and tests are performed, to investigate the potential of threaded textured surfaces in tribological components like mechanical seals, piston rings and journal bearings. In these tests, load carriage capacity is significantly increased with threaded textured shaft surfaces to the shafts with non‐textured surfaces. Originality/value – The paper discusses a new modelling scheme known as artificial neural networks. A neural network predictor has been employed to analyze the effects of shaft surface profiles in hydrodynamic lubrication of journal bearing.

Journal

Industrial Lubrication and TribologyEmerald Publishing

Published: Aug 14, 2009

Keywords: Surface texture; Bearings; Neural nets; Load capacity

References