Interest mining in virtual learning environments

Interest mining in virtual learning environments Purpose – Behaviour in virtual learning environments (VLE), including travel, gaze, manipulate, gesture and conversation, offer considerable information about the user's implicit interest. The purpose of this study is to find an approach for user interest mining via behaviour analysis in a VLE. Design/methodology/approach – According to research in psychology, any interaction in a VLE has implications for the user's implicit interest. In order to mine a user's implicit interest, an explicit interaction‐interest model needs to be established. This paper presents findings from the concept classification of behaviour in a VLE. Based on this classification, the paper proposes a hierarchical interaction model. In this model the relation between interaction and user interest can be described and used to improve system performance. Findings – In the experimental prototype the authors found that user‐implicit interest could be mined via stages of web mining, i.e. capture the user's original gesture signal, data pre‐process, pattern discovery, interaction goal and interest mining. The mined user's interest information can be used to update the state of local interest, leading to a reduction in network traffic and promotion of better system performance. Originality/value – This is an original study using behaviour analysis for interest mining in e‐learning. Research on interest mining in e‐learning focused on content mining or search engine and usage mining in web courses. The paper provides valuable clues regarding user interest mining in a VLE, in which the context is different from usual web courses. The research output can be implemented widely, including online learning, and especially in the VLE. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Online Information Review Emerald Publishing

Interest mining in virtual learning environments

Loading next page...
 
/lp/emerald-publishing/interest-mining-in-virtual-learning-environments-pRKDX0qGn1
Publisher
Emerald Publishing
Copyright
Copyright © 2008 Emerald Group Publishing Limited. All rights reserved.
ISSN
1468-4527
DOI
10.1108/14684520810879782
Publisher site
See Article on Publisher Site

Abstract

Purpose – Behaviour in virtual learning environments (VLE), including travel, gaze, manipulate, gesture and conversation, offer considerable information about the user's implicit interest. The purpose of this study is to find an approach for user interest mining via behaviour analysis in a VLE. Design/methodology/approach – According to research in psychology, any interaction in a VLE has implications for the user's implicit interest. In order to mine a user's implicit interest, an explicit interaction‐interest model needs to be established. This paper presents findings from the concept classification of behaviour in a VLE. Based on this classification, the paper proposes a hierarchical interaction model. In this model the relation between interaction and user interest can be described and used to improve system performance. Findings – In the experimental prototype the authors found that user‐implicit interest could be mined via stages of web mining, i.e. capture the user's original gesture signal, data pre‐process, pattern discovery, interaction goal and interest mining. The mined user's interest information can be used to update the state of local interest, leading to a reduction in network traffic and promotion of better system performance. Originality/value – This is an original study using behaviour analysis for interest mining in e‐learning. Research on interest mining in e‐learning focused on content mining or search engine and usage mining in web courses. The paper provides valuable clues regarding user interest mining in a VLE, in which the context is different from usual web courses. The research output can be implemented widely, including online learning, and especially in the VLE.

Journal

Online Information ReviewEmerald Publishing

Published: Apr 11, 2008

Keywords: E‐learning; Behaviour

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off