Intelligent techniques for forecasting multiple time series in real‐world systems

Intelligent techniques for forecasting multiple time series in real‐world systems Purpose – The purpose of this paper is to describe a real‐world system developed for a large food distribution company which requires forecasting demand for thousands of products across multiple warehouses. The number of different time series that the system must model and predict is on the order of 10 5 . The study details the system's forecasting algorithm which efficiently handles several difficult requirements including the prediction of multiple time series, the need for a continuously self‐updating model, and the desire to automatically identify and analyze various time series characteristics such as seasonal spikes and unprecedented events. Design/methodology/approach – The forecasting algorithm makes use of a hybrid model consisting of both statistical and heuristic techniques to fulfill these requirements and to satisfy a variety of business constraints/rules related to over‐ and under‐stocking. Findings – The robustness of the system has been proven by its heavy and sustained use since being adopted in November 2009 by a company that serves 91 percent of the combined populations of Australia and New Zealand. Originality/value – This paper provides a case study of a real‐world system that employs a novel hybrid model to forecast multiple time series in a non‐static environment. The value of the model lies in its ability to accurately capture and forecast a very large and constantly changing portfolio of time series efficiently and without human intervention. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Computing and Cybernetics Emerald Publishing

Intelligent techniques for forecasting multiple time series in real‐world systems

Loading next page...
 
/lp/emerald-publishing/intelligent-techniques-for-forecasting-multiple-time-series-in-real-zTqpn4LQNA
Publisher
Emerald Publishing
Copyright
Copyright © 2011 Emerald Group Publishing Limited. All rights reserved.
ISSN
1756-378X
DOI
10.1108/17563781111159996
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to describe a real‐world system developed for a large food distribution company which requires forecasting demand for thousands of products across multiple warehouses. The number of different time series that the system must model and predict is on the order of 10 5 . The study details the system's forecasting algorithm which efficiently handles several difficult requirements including the prediction of multiple time series, the need for a continuously self‐updating model, and the desire to automatically identify and analyze various time series characteristics such as seasonal spikes and unprecedented events. Design/methodology/approach – The forecasting algorithm makes use of a hybrid model consisting of both statistical and heuristic techniques to fulfill these requirements and to satisfy a variety of business constraints/rules related to over‐ and under‐stocking. Findings – The robustness of the system has been proven by its heavy and sustained use since being adopted in November 2009 by a company that serves 91 percent of the combined populations of Australia and New Zealand. Originality/value – This paper provides a case study of a real‐world system that employs a novel hybrid model to forecast multiple time series in a non‐static environment. The value of the model lies in its ability to accurately capture and forecast a very large and constantly changing portfolio of time series efficiently and without human intervention.

Journal

International Journal of Intelligent Computing and CyberneticsEmerald Publishing

Published: Aug 23, 2011

Keywords: Forecasting; Hybrid system; Distribution management; Time series analysis; Inventory management

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off