Intelligent Settings Using Artificial Intelligence at Auto-leveling Drawing Frame

Intelligent Settings Using Artificial Intelligence at Auto-leveling Drawing Frame The optimization of a process requires exact knowledge of the process, which is knowledge of correlations and inter-dependence between the process-determining variables and the knowledge over the actual condition of the process. In a data rich knowledge poor process like spinning, where the exact relationships between machine, material, climate and quality are yet to be concluded objectively, this research focuses on the use of artificial neural networks as a tool to find out the correlations between decisive variables and to determine the optimum settings. Drawing frame is considered to be the last fault correction point in spinning preparation chain, therefore, its settings has a vital role to play towards yarn quality. Leveling action point is one of the important auto-leveling settings involving an automatic search function at Rieter drawing frame RSB-D40 and requiring a large amount of sliver. In this study, attempts were made to optimize the leveling action point. Optimization of draft settings is also within the scope of this article. The ANNs were used to achieve such objectives and they were found to be very helpful in identifying the optimum settings and hence decreasing material loss and improving sliver quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research Journal of Textile and Apparel Emerald Publishing

Intelligent Settings Using Artificial Intelligence at Auto-leveling Drawing Frame

Loading next page...
 
/lp/emerald-publishing/intelligent-settings-using-artificial-intelligence-at-auto-leveling-T3D0yGWkLv
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1560-6074
DOI
10.1108/RJTA-15-03-2011-B010
Publisher site
See Article on Publisher Site

Abstract

The optimization of a process requires exact knowledge of the process, which is knowledge of correlations and inter-dependence between the process-determining variables and the knowledge over the actual condition of the process. In a data rich knowledge poor process like spinning, where the exact relationships between machine, material, climate and quality are yet to be concluded objectively, this research focuses on the use of artificial neural networks as a tool to find out the correlations between decisive variables and to determine the optimum settings. Drawing frame is considered to be the last fault correction point in spinning preparation chain, therefore, its settings has a vital role to play towards yarn quality. Leveling action point is one of the important auto-leveling settings involving an automatic search function at Rieter drawing frame RSB-D40 and requiring a large amount of sliver. In this study, attempts were made to optimize the leveling action point. Optimization of draft settings is also within the scope of this article. The ANNs were used to achieve such objectives and they were found to be very helpful in identifying the optimum settings and hence decreasing material loss and improving sliver quality.

Journal

Research Journal of Textile and ApparelEmerald Publishing

Published: Aug 1, 2011

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off