Intelligent fashion styling using genetic search and neural classification

Intelligent fashion styling using genetic search and neural classification Purpose – The purpose of this paper is to develop an intelligent system for fashion style selection for non-standard female body shapes. Design/methodology/approach – With the goal of creating natural aesthetic relationship between the body shape and the shape of clothing, garments designed for the upper and lower body are combined to fit different female body shapes, which are classified as V, A, H and O-shapes. The proposed intelligent system combines genetic algorithm (GA) with a neural network classifier, which is trained using the particle swarm optimization (PSO). The former, called genetic search, is used to find the optimal design parameters corresponding to a best fit for the desired target, while the task of the latter, called neural classification, is to evaluate fitness (goodness) of each evolved new fashion style. Findings – The experimental results are fashion styling recommendations for the four female body shapes, drawn from 260 possible combinations, based on variations from 15 attributes. These results are considered to be a strong indication of the potential benefits of the application of intelligent systems to fashion styling. Originality/value – The proposed intelligent system combines the effective searching capabilities of two approaches. The first approach uses the GA for identifying best fits to the target shape of the body in the solution space. The second is the PSO for finding optimal (with respect to training mean-squared error) weight and threshold parameters of the neural classifier, which is able to evaluate the fitness of successively evolved fashion styles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Clothing Science and Technology Emerald Publishing

Intelligent fashion styling using genetic search and neural classification

Loading next page...
 
/lp/emerald-publishing/intelligent-fashion-styling-using-genetic-search-and-neural-ydW78jd76Q
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to develop an intelligent system for fashion style selection for non-standard female body shapes. Design/methodology/approach – With the goal of creating natural aesthetic relationship between the body shape and the shape of clothing, garments designed for the upper and lower body are combined to fit different female body shapes, which are classified as V, A, H and O-shapes. The proposed intelligent system combines genetic algorithm (GA) with a neural network classifier, which is trained using the particle swarm optimization (PSO). The former, called genetic search, is used to find the optimal design parameters corresponding to a best fit for the desired target, while the task of the latter, called neural classification, is to evaluate fitness (goodness) of each evolved new fashion style. Findings – The experimental results are fashion styling recommendations for the four female body shapes, drawn from 260 possible combinations, based on variations from 15 attributes. These results are considered to be a strong indication of the potential benefits of the application of intelligent systems to fashion styling. Originality/value – The proposed intelligent system combines the effective searching capabilities of two approaches. The first approach uses the GA for identifying best fits to the target shape of the body in the solution space. The second is the PSO for finding optimal (with respect to training mean-squared error) weight and threshold parameters of the neural classifier, which is able to evaluate the fitness of successively evolved fashion styles.

Journal

International Journal of Clothing Science and TechnologyEmerald Publishing

Published: Apr 20, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off