Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study aims to address the problem of the divergence of traditional inertial navigation system (INS)/celestial navigation system (CNS)-integrated navigation for ballistic missiles. The authors introduce Doppler navigation system (DNS) and X-ray pulsar navigation (XNAV) to the traditional INS/CNS-integrated navigation system and then propose an INS/CNS/DNS/XNAV deep integrated navigation system.Design/methodology/approachDNS and XNAV can provide velocity and position information, respectively. In addition to providing velocity information directly, DNS suppresses the impact of the Doppler effect on pulsar time of arrival (TOA). A pulsar TOA with drift bias is observed during the short navigation process. To solve this problem, the pulsar TOA drift bias model is established. And the parameters of the navigation filter are optimised based on this model.FindingsThe experimental results show that the INS/CNS/DNS/XNAV deep integrated navigation can suppress the drift of the accelerometer to a certain extent to improve the precision of position and velocity determination. In addition, this integrated navigation method can reduce the required accuracy of inertial navigation, thereby reducing the cost of missile manufacturing and realising low-cost and high-precision navigation.Originality/valueThe velocity information provided by the DNS can suppress the pulsar TOA drift, thereby improving the positioning accuracy of the XNAV. This reflects the “deep” integration of these two navigation methods.
Aircraft Engineering and Aerospace Technology: An International Journal – Emerald Publishing
Published: Jan 2, 2023
Keywords: Inertial navigation; Kalman filter; X-ray pulsar navigation; Integrated navigation; Celestial navigation; Doppler navigation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.