Access the full text.
Sign up today, get DeepDyve free for 14 days.
Simultaneous hydrofracturing of multiple perforation clusters in vertical wells has been applied in the stimulation of hydrocarbon resources reservoirs. This technology is significantly impeded due to the challenges in its application to the multilayered reservoirs that comprise multiple interlayers. One of the challenges is the accurate understanding and characterization of propagation and deflection of the multiple hydraulic fractures between reservoirs and embedded interlayers.Design/methodology/approachNumerical models of the tight multilayered reservoirs containing multiple interlayers were established to study hydrofracturing of multiple perforation clusters and its influencing factors on unstable propagation and deflection of hydraulic fractures. Brittle and plastic multilayered reservoirs fully considering the influences of different in situ stress ratio and physical attributes for reservoir and interlayer strata on propagations of hydraulic fractures were investigated. The combined finite element–discrete element method and mesh refinement strategy were adopted to guarantee the accuracy of stress solutions and reliability of fracture path in computation.FindingsResults show that the shear stress fields between adjacent multiple hydraulic fractures are superposed to cause fractures deflection. Stress shadows induce the shielding effects of hydraulic fractures and inhibit fractures growth to emerge unstable propagation behaviors, and a main single fracture and several minor fractures develop. As the in situ stress ratio increases, hydraulic fractures more easily deflect toward the direction of maximum in situ stress, and stress shadow and mutual interaction effects between them are intensified. Compared to brittle reservoir, plastic-enhanced reservoir may limit fracture growth and cannot form long fracture length; nevertheless, plastic properties of reservoir are prone to induce more microseismic events with larger magnitude.Originality/valueThe obtained fracturing behaviors and mechanisms based on engineering-scale multilayered reservoir may provide effective schemes for controlling and estimating the unstable propagation of multiple hydraulic fractures.
Engineering Computations – Emerald Publishing
Published: Mar 24, 2022
Keywords: Unstable hydraulic fractures; Stress field disturbance; Bedded discontinuous interfaces; Multilayered reservoirs; Microseismic events; Finite element–discrete element model
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.