Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeThis paper aims to investigate the aspect ratio (AR; ratio of enclosure height:length) dependence of steady-state Rayleigh–Bénard convection of Bingham fluids within rectangular enclosures for both constant wall temperature and constant wall heat flux boundary conditions. A nominal Rayleigh number range 103 ≤ Ra ≤ 105 (Ra defined based on the height) for a single representative value of nominal Prandtl number (i.e. Pr = 500) has been considered for 1/4 ≤ AR ≤ 4.Design/methodology/approachThe bi-viscosity Bingham model is used to mimic Bingham fluids for Rayleigh–Bénard convection of Bingham fluids in rectangular enclosures. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity.FindingsIt has been found that buoyancy-driven flow strengthens with increasing nominal Rayleigh number Ra, but the convective transport weakens with increasing Bingham number Bn, because of additional flow resistance arising from yield stress in Bingham fluids. The relative contribution of thermal conduction (advection) to the total thermal transport strengthens (diminishes) with increasing AR for a given set of values of Ra and Pr for both Newtonian and Bingham fluids for both boundary conditions, and the thermal transport takes place purely because of conduction for tall enclosures.Originality/valueCorrelations for the mean Nusselt number Nu¯have been proposed for both boundary conditions for both Newtonian and Bingham fluids using scaling arguments, and the correlations have been demonstrated to predict Nu¯obtained from simulation data for 1/4 ≤ AR ≤ 4, 103 ≤ Ra ≤ 105 and Pr = 500.
International Journal of Numerical Methods for Heat & Fluid Flow – Emerald Publishing
Published: Feb 6, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.