Influence of factors on collapse risk of loess tunnel: a multi-index assessment model

Influence of factors on collapse risk of loess tunnel: a multi-index assessment model PurposeBecause of the properties of loess, the occurrence of collapse following deformation of a large settlement is a common problem during the excavation of tunnels on loess ground. Hence, risk management for safer loess tunnel construction is of great significance. The purpose of this paper is to explore the influence of factors on collapse risk of loess tunnels and establish a risk assessment model using rough set theory and extension theory.Design/methodology/approachThe surrounding rock level, groundwater conditions, burial depth, excavation method and support close time were selected as the factors and settlement deformation was the verification index for risk assessment. First, using rough set theory, the influence of risk factors on the collapse risk of loess tunnels was calculated by researching engineering data of excavated sections. Then, a collapse risk assessment model was developed based on extension theory. As the final step, the model was applied to practical engineering in the Loess Plateau of China.FindingsThe weights of surrounding rock level, groundwater conditions, burial depth, excavation method and support close time obtained using rough set theory were respectively 10.811 per cent, 18.919 per cent, 24.324 per cent, 40.541 per cent and 5.406 per cent. The assessment results obtained using the model were in good agreement with field observations.Originality/valueThis study highlights key points in collapse risk management of loess tunnels, which could be very useful for future construction methods. The model, using easily obtained parameters, helps in predicting the collapse risk level of loess tunnels excavated under different geological conditions and by different construction organizations and provides a reference for future studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Engineering, Design and Technology Emerald Publishing

Influence of factors on collapse risk of loess tunnel: a multi-index assessment model

Loading next page...
 
/lp/emerald-publishing/influence-of-factors-on-collapse-risk-of-loess-tunnel-a-multi-index-3eAr1QocvI
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1726-0531
DOI
10.1108/JEDT-02-2018-0018
Publisher site
See Article on Publisher Site

Abstract

PurposeBecause of the properties of loess, the occurrence of collapse following deformation of a large settlement is a common problem during the excavation of tunnels on loess ground. Hence, risk management for safer loess tunnel construction is of great significance. The purpose of this paper is to explore the influence of factors on collapse risk of loess tunnels and establish a risk assessment model using rough set theory and extension theory.Design/methodology/approachThe surrounding rock level, groundwater conditions, burial depth, excavation method and support close time were selected as the factors and settlement deformation was the verification index for risk assessment. First, using rough set theory, the influence of risk factors on the collapse risk of loess tunnels was calculated by researching engineering data of excavated sections. Then, a collapse risk assessment model was developed based on extension theory. As the final step, the model was applied to practical engineering in the Loess Plateau of China.FindingsThe weights of surrounding rock level, groundwater conditions, burial depth, excavation method and support close time obtained using rough set theory were respectively 10.811 per cent, 18.919 per cent, 24.324 per cent, 40.541 per cent and 5.406 per cent. The assessment results obtained using the model were in good agreement with field observations.Originality/valueThis study highlights key points in collapse risk management of loess tunnels, which could be very useful for future construction methods. The model, using easily obtained parameters, helps in predicting the collapse risk level of loess tunnels excavated under different geological conditions and by different construction organizations and provides a reference for future studies.

Journal

Journal of Engineering, Design and TechnologyEmerald Publishing

Published: Oct 9, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off