Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Indoor environmental quality improvement of student dormitories in Tehran, Iran

Indoor environmental quality improvement of student dormitories in Tehran, Iran University students spend a considerable amount of time in dorm rooms, where their environmental condition affects residents' health, well-being, sleep quality and the associated performance. Accordingly, this study aims to run an initial assessment of the environmental quality of two dormitory buildings in Tehran, using field studies and computational simulation, and then provide feasible optimized improvement strategies. The possible correlation between architectural elements and the environmental quality and the impact of proposed solutions on the annual energy use of these spaces are also discussed.Design/methodology/approachField studies and computational simulation.FindingsResults indicate that applied strategies, including shadings, reflectors, thermal and acoustic insulations, inlet vents and ceiling fans, can boost different aspects of the thermal condition, ventilation, acoustics and visual comfort by 21.77, 55.96, 20.69 and 50.37%, respectively. Accordingly, an acceptable comfort level can simply be achieved at a low cost by installing or replacing a few construction elements in dorm rooms. Nevertheless, a systematic architectural design can offer healthy spaces. For instance, south-facing rooms with large windows provide a higher level of thermal comfort and daylight quality.Research limitations/implicationsThis study shows that an acceptable level of IEQ can be achieved in dorm rooms by applying simple retrofit strategies. Moreover, energy consumption of dormitories can be significantly reduced using these solutions. However, the efficiency of the strategies in comparison to their economic aspects should be discussed, and results need to be further validated in real conditions. It is also recommended that a more extensive range of dormitory room typologies be studied in future studies. The results of this study are limited to the study context and so they can only be applied in case studies with similar use and climatic condition.Originality/valueWhile many studies have explored the environmental quality of dormitories in different climatic conditions, no significant work has been found in Iran, Tehran investigating feasible optimized improvement strategies responding to all IEQ aspects of acoustics, thermal comfort, air and visual quality. Accordingly, this study makes an initial assessment of IEQ factors in a typical dormitory complex, and then develops practical retrofit strategies to bring the environmental condition of these spaces close to the suggested standards. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Building Pathology and Adaptation Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/indoor-environmental-quality-improvement-of-student-dormitories-in-dvAjiE60pi

References (30)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2398-4708
DOI
10.1108/ijbpa-09-2021-0128
Publisher site
See Article on Publisher Site

Abstract

University students spend a considerable amount of time in dorm rooms, where their environmental condition affects residents' health, well-being, sleep quality and the associated performance. Accordingly, this study aims to run an initial assessment of the environmental quality of two dormitory buildings in Tehran, using field studies and computational simulation, and then provide feasible optimized improvement strategies. The possible correlation between architectural elements and the environmental quality and the impact of proposed solutions on the annual energy use of these spaces are also discussed.Design/methodology/approachField studies and computational simulation.FindingsResults indicate that applied strategies, including shadings, reflectors, thermal and acoustic insulations, inlet vents and ceiling fans, can boost different aspects of the thermal condition, ventilation, acoustics and visual comfort by 21.77, 55.96, 20.69 and 50.37%, respectively. Accordingly, an acceptable comfort level can simply be achieved at a low cost by installing or replacing a few construction elements in dorm rooms. Nevertheless, a systematic architectural design can offer healthy spaces. For instance, south-facing rooms with large windows provide a higher level of thermal comfort and daylight quality.Research limitations/implicationsThis study shows that an acceptable level of IEQ can be achieved in dorm rooms by applying simple retrofit strategies. Moreover, energy consumption of dormitories can be significantly reduced using these solutions. However, the efficiency of the strategies in comparison to their economic aspects should be discussed, and results need to be further validated in real conditions. It is also recommended that a more extensive range of dormitory room typologies be studied in future studies. The results of this study are limited to the study context and so they can only be applied in case studies with similar use and climatic condition.Originality/valueWhile many studies have explored the environmental quality of dormitories in different climatic conditions, no significant work has been found in Iran, Tehran investigating feasible optimized improvement strategies responding to all IEQ aspects of acoustics, thermal comfort, air and visual quality. Accordingly, this study makes an initial assessment of IEQ factors in a typical dormitory complex, and then develops practical retrofit strategies to bring the environmental condition of these spaces close to the suggested standards.

Journal

International Journal of Building Pathology and AdaptationEmerald Publishing

Published: Mar 8, 2023

Keywords: Student dormitories; Indoor environmental quality; Retrofit strategies; Architectural elements; Computational simulation

There are no references for this article.