Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I – method

Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I – method Purpose – The purpose of this paper is to provide an overview of unobserved heterogeneity in the context of partial least squares structural equation modeling (PLS-SEM), its prevalence and challenges for social science researchers. Part II – in the next issue ( European Business Review , Vol. 28 No. 2) – presents a case study, which illustrates how to identify and treat unobserved heterogeneity in PLS-SEM using the finite mixture PLS (FIMIX-PLS) module in the SmartPLS 3 software. Design/methodology/approach – The paper merges literatures from various disciplines, such as management information systems, marketing and statistics, to present a state-of-the-art review of FIMIX-PLS. Based on this review, the paper offers guidelines on how to apply the technique to specific research problems. Findings – FIMIX-PLS offers a means to identify and treat unobserved heterogeneity in PLS-SEM and is particularly useful for determining the number of segments to extract from the data. In the latter respect, prior applications of FIMIX-PLS restricted their focus to a very limited set of criteria, but future studies should broaden the scope by considering information criteria, theory and logic. Research limitations/implications – Since the introduction of FIMIX-PLS, a range of alternative latent class techniques have emerged to address some of the limitations of the approach relating, for example, to the technique’s inability to handle heterogeneity in the measurement models and its distributional assumptions. The second part of this article (Part II) discusses alternative latent class techniques in greater detail and calls for the joint use of FIMIX-PLS and PLS prediction-oriented segmentation. Originality/value – This paper is the first to offer researchers who have not been exposed to the method an introduction to FIMIX-PLS. Based on a state-of-the-art review of the technique in Part I, Part II follows up by offering a step-by-step tutorial on how to use FIMIX-PLS in SmartPLS 3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Business Review Emerald Publishing

Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I – method

Loading next page...
 
/lp/emerald-publishing/identifying-and-treating-unobserved-heterogeneity-with-fimix-pls-part-65noMYjXzk

References (44)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0955-534X
DOI
10.1108/EBR-09-2015-0094
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to provide an overview of unobserved heterogeneity in the context of partial least squares structural equation modeling (PLS-SEM), its prevalence and challenges for social science researchers. Part II – in the next issue ( European Business Review , Vol. 28 No. 2) – presents a case study, which illustrates how to identify and treat unobserved heterogeneity in PLS-SEM using the finite mixture PLS (FIMIX-PLS) module in the SmartPLS 3 software. Design/methodology/approach – The paper merges literatures from various disciplines, such as management information systems, marketing and statistics, to present a state-of-the-art review of FIMIX-PLS. Based on this review, the paper offers guidelines on how to apply the technique to specific research problems. Findings – FIMIX-PLS offers a means to identify and treat unobserved heterogeneity in PLS-SEM and is particularly useful for determining the number of segments to extract from the data. In the latter respect, prior applications of FIMIX-PLS restricted their focus to a very limited set of criteria, but future studies should broaden the scope by considering information criteria, theory and logic. Research limitations/implications – Since the introduction of FIMIX-PLS, a range of alternative latent class techniques have emerged to address some of the limitations of the approach relating, for example, to the technique’s inability to handle heterogeneity in the measurement models and its distributional assumptions. The second part of this article (Part II) discusses alternative latent class techniques in greater detail and calls for the joint use of FIMIX-PLS and PLS prediction-oriented segmentation. Originality/value – This paper is the first to offer researchers who have not been exposed to the method an introduction to FIMIX-PLS. Based on a state-of-the-art review of the technique in Part I, Part II follows up by offering a step-by-step tutorial on how to use FIMIX-PLS in SmartPLS 3.

Journal

European Business ReviewEmerald Publishing

Published: Jan 11, 2016

There are no references for this article.