High Temperature Performance of Self-Compacting High-Volume Fly Ash Concrete Mixes

High Temperature Performance of Self-Compacting High-Volume Fly Ash Concrete Mixes Quite often, concrete in structures is likely to get exposed to high temperatures, including an incident of fire. The strength-retention properties of concrete after such an exposure are of great importance in terms of the serviceability of buildings. This paper presents an experimental study on the strength retention and impermeability aspects of a set of self compacting, high-volume fly ash concrete mixes under elevated temperatures. Five selfcompacting concrete mixes with a higher 60% level of cement replacement with fly-ash, are designed and the effects of elevated temperatures, in the range of 200-800°C, on the physical, mechanical and durability properties of these mixes are assessed. The assessment is in terms of the weight losses and the reduction in the compressive strengths of concrete cubes and split tensile strengths of concrete cylinders. The durability characteristics are assessed in terms of RCPT test results on these mixes. Performances of these self compacting concrete mixes (SCC) at elevated temperatures are also compared with two normally-vibrated concrete mixes (NCs) of an equivalent M30 strength grade. Test results indicate that weight of the specimens significantly get reduced with an increase in the level of elevated temperature, with sharp variations beyond 600°C. The experimental results also show that large improvements against chloride-ion penetration and better strength-retention at higher temperatures can be realized with self-compacting high-volume fly-ash concrete mixes additionally admixed with GGBFS and silica fume. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Fire Engineering Emerald Publishing

High Temperature Performance of Self-Compacting High-Volume Fly Ash Concrete Mixes

Loading next page...
 
/lp/emerald-publishing/high-temperature-performance-of-self-compacting-high-volume-fly-ash-dRagvOedRS
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2040-2317
DOI
10.1260/2040-2317.2.2.81
Publisher site
See Article on Publisher Site

Abstract

Quite often, concrete in structures is likely to get exposed to high temperatures, including an incident of fire. The strength-retention properties of concrete after such an exposure are of great importance in terms of the serviceability of buildings. This paper presents an experimental study on the strength retention and impermeability aspects of a set of self compacting, high-volume fly ash concrete mixes under elevated temperatures. Five selfcompacting concrete mixes with a higher 60% level of cement replacement with fly-ash, are designed and the effects of elevated temperatures, in the range of 200-800°C, on the physical, mechanical and durability properties of these mixes are assessed. The assessment is in terms of the weight losses and the reduction in the compressive strengths of concrete cubes and split tensile strengths of concrete cylinders. The durability characteristics are assessed in terms of RCPT test results on these mixes. Performances of these self compacting concrete mixes (SCC) at elevated temperatures are also compared with two normally-vibrated concrete mixes (NCs) of an equivalent M30 strength grade. Test results indicate that weight of the specimens significantly get reduced with an increase in the level of elevated temperature, with sharp variations beyond 600°C. The experimental results also show that large improvements against chloride-ion penetration and better strength-retention at higher temperatures can be realized with self-compacting high-volume fly-ash concrete mixes additionally admixed with GGBFS and silica fume.

Journal

Journal of Structural Fire EngineeringEmerald Publishing

Published: Jun 1, 2011

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off