High-Temperature Creep Buckling Phenomenon of Steel Columns Subjected to Fire

High-Temperature Creep Buckling Phenomenon of Steel Columns Subjected to Fire This paper presents highlights of on-going research, which aims at developing analytical, computational and experimental predictions of the phenomenon of creep buckling in steel columns subjected to fire. Analytical solutions using the concept of time-dependent tangent modulus are developed to model time-dependent buckling behavior of steel columns at elevated temperatures. Results from computational creep buckling studies using Abaqus are also presented, and compared with analytical predictions. Material creep data on ASTM A992M steel is also presented and compared to existing creep models for structural steel. Both analytical and computational methods utilize material creep models for structural steel developed by Harmathy, by Fields and Fields, and by the authors. Predictions from this study are also compared against those from Eurocode 3 and the AISC Specification. Results of this work show that neglecting creep effects can lead to erroneous and potentially unsafe predictions of the strength of steel columns subjected to fire. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Fire Engineering Emerald Publishing

High-Temperature Creep Buckling Phenomenon of Steel Columns Subjected to Fire

Loading next page...
 
/lp/emerald-publishing/high-temperature-creep-buckling-phenomenon-of-steel-columns-subjected-VVb5OSeUC0
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2040-2317
DOI
10.1260/2040-2317.5.3.189
Publisher site
See Article on Publisher Site

Abstract

This paper presents highlights of on-going research, which aims at developing analytical, computational and experimental predictions of the phenomenon of creep buckling in steel columns subjected to fire. Analytical solutions using the concept of time-dependent tangent modulus are developed to model time-dependent buckling behavior of steel columns at elevated temperatures. Results from computational creep buckling studies using Abaqus are also presented, and compared with analytical predictions. Material creep data on ASTM A992M steel is also presented and compared to existing creep models for structural steel. Both analytical and computational methods utilize material creep models for structural steel developed by Harmathy, by Fields and Fields, and by the authors. Predictions from this study are also compared against those from Eurocode 3 and the AISC Specification. Results of this work show that neglecting creep effects can lead to erroneous and potentially unsafe predictions of the strength of steel columns subjected to fire.

Journal

Journal of Structural Fire EngineeringEmerald Publishing

Published: Sep 1, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off