Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Heat removal of in‐tube viscous flows to air with the assistance of arrays of plate fins Part I: theoretical aspects involving 3‐D, 2‐D and 1‐D models

Heat removal of in‐tube viscous flows to air with the assistance of arrays of plate fins Part I:... A detailed comparative study of the heat transfer augmentation of in‐tube flows accounting for an array of equally‐spaced plate fins attached at the outer surface is undertaken. The aim of the paper is to critically examine the thermal response of this kind of finned tubes to three different mathematical models: a complete 3‐D distributed model, a reduced 2‐D distributed/lumped hybrid model and two largely simplified 1‐D lumped models. For the three models tested, the computed results consistently demonstrate that the simplest 1‐D lumped model, with embedded arithmetic spatial‐ and geometric spatial‐means of the angular external convective coefficients provide dependable algebraic estimates of the actual heat transfer provided by the 3‐D distributed model with its indispensable finite‐difference solution. Further, an arithmetic mean of the maximum and minimum heat transfer supplied by the 1‐D lumped model delivered results that match those computed with the 3‐D distributed model. The most important steps of the mathematical derivations have been highlighted. A representative group of thermal performance diagrams is explained with the intent to assist engineers engaged in the thermal design of externally finned tubes of compact heat exchangers and HVAC devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Heat removal of in‐tube viscous flows to air with the assistance of arrays of plate fins Part I: theoretical aspects involving 3‐D, 2‐D and 1‐D models

Loading next page...
 
/lp/emerald-publishing/heat-removal-of-in-tube-viscous-flows-to-air-with-the-assistance-of-8b9LiLLtLX
Publisher
Emerald Publishing
Copyright
Copyright © 2000 MCB UP Ltd. All rights reserved.
ISSN
0961-5539
DOI
10.1108/09615530010318035
Publisher site
See Article on Publisher Site

Abstract

A detailed comparative study of the heat transfer augmentation of in‐tube flows accounting for an array of equally‐spaced plate fins attached at the outer surface is undertaken. The aim of the paper is to critically examine the thermal response of this kind of finned tubes to three different mathematical models: a complete 3‐D distributed model, a reduced 2‐D distributed/lumped hybrid model and two largely simplified 1‐D lumped models. For the three models tested, the computed results consistently demonstrate that the simplest 1‐D lumped model, with embedded arithmetic spatial‐ and geometric spatial‐means of the angular external convective coefficients provide dependable algebraic estimates of the actual heat transfer provided by the 3‐D distributed model with its indispensable finite‐difference solution. Further, an arithmetic mean of the maximum and minimum heat transfer supplied by the 1‐D lumped model delivered results that match those computed with the 3‐D distributed model. The most important steps of the mathematical derivations have been highlighted. A representative group of thermal performance diagrams is explained with the intent to assist engineers engaged in the thermal design of externally finned tubes of compact heat exchangers and HVAC devices.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: May 1, 2000

Keywords: Fins; Heat transfer; Flow

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month