Guidelines for the development of the quality of aircraft bevel gears

Guidelines for the development of the quality of aircraft bevel gears Purpose – The purpose of this article is to present a method for the analysis of the quality of the bevel gear at the development level. Design/methodology/approach – A non-commercial aircraft bevel gear design support system was developed. The system utilises matrix and vector calculi to model the technological machining systems and to analyse the contact of the designed pair. Both the technological model and the design model offer the possibility of manipulating the calculated parameters. This enables independent selection of the pinion/gear engagement, making it possible to achieved the desired contact pattern (its shape, position and size) and/or minimise motion transmission deviation. This article presents an analysis of the meshing of the aircraft transmission designed in two variants. Findings – The newly developed non-commercial transmission design support system offers the capability to freely adjust mesh quality indicators. The first step is to perform automated technological calculations for a specific geometry of gear members, on the basis of which gear and pinion flanks are developed. Then, numerical models of tooth flanks are configured in the designed pair, and tooth mesh quality is verified. Quality indicators are provided in the form of summary contact pattern and the motion graph. In the subsequent step, changes are made to basic geometry of pinion tooth flank. After satisfactory mesh indicators have been reached, the transmission is tested for assembly errors and additional corrections are made to the geometry of the pinion tooth surface, as required. The above methodology guarantees that the assumed quality indicators are achieved on the physically cut transmission. Practical implications – Fast preparation of the technology with guaranteed high mesh quality is a significant factor in the competitiveness of an industrial plant which implements a new bevel gear in its manufacturing activities. Originality/value – The visualisation of the results of the use of the application allows the user to easily interpret the analysed contact pattern and take appropriate decisions as to the necessity of making corrections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology: An International Journal Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/guidelines-for-the-development-of-the-quality-of-aircraft-bevel-gears-Ay3PVq5qE4
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0002-2667
DOI
10.1108/AEAT-07-2014-0105
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this article is to present a method for the analysis of the quality of the bevel gear at the development level. Design/methodology/approach – A non-commercial aircraft bevel gear design support system was developed. The system utilises matrix and vector calculi to model the technological machining systems and to analyse the contact of the designed pair. Both the technological model and the design model offer the possibility of manipulating the calculated parameters. This enables independent selection of the pinion/gear engagement, making it possible to achieved the desired contact pattern (its shape, position and size) and/or minimise motion transmission deviation. This article presents an analysis of the meshing of the aircraft transmission designed in two variants. Findings – The newly developed non-commercial transmission design support system offers the capability to freely adjust mesh quality indicators. The first step is to perform automated technological calculations for a specific geometry of gear members, on the basis of which gear and pinion flanks are developed. Then, numerical models of tooth flanks are configured in the designed pair, and tooth mesh quality is verified. Quality indicators are provided in the form of summary contact pattern and the motion graph. In the subsequent step, changes are made to basic geometry of pinion tooth flank. After satisfactory mesh indicators have been reached, the transmission is tested for assembly errors and additional corrections are made to the geometry of the pinion tooth surface, as required. The above methodology guarantees that the assumed quality indicators are achieved on the physically cut transmission. Practical implications – Fast preparation of the technology with guaranteed high mesh quality is a significant factor in the competitiveness of an industrial plant which implements a new bevel gear in its manufacturing activities. Originality/value – The visualisation of the results of the use of the application allows the user to easily interpret the analysed contact pattern and take appropriate decisions as to the necessity of making corrections.

Journal

Aircraft Engineering and Aerospace Technology: An International JournalEmerald Publishing

Published: Mar 2, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off