Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Grey system based novel approach for stock market forecasting

Grey system based novel approach for stock market forecasting Purpose – Making decisions in finance have been regarded as one of the biggest challenges in the modern economy today; especially, analysing and forecasting unstable data patterns with limited sample observations under the numerous economic policies and reforms. The purpose of this paper is to propose suitable forecasting approach based on grey methods in short-term predictions. Design/methodology/approach – High volatile fluctuations with instability patterns are the common phenomenon in the Colombo Stock Exchange (CSE), Sri Lanka. As a subset of the literature, very few studies have been focused to find the short-term forecastings in CSE. So, the current study mainly attempted to understand the trends and suitable forecasting model in order to predict the future behaviours in CSE during the period from October 2014 to March 2015. As a result of non-stationary behavioural patterns over the period of time, the grey operational models namely GM(1,1), GM(2,1), grey Verhulst and non-linear grey Bernoulli model were used as a comparison purpose. Findings – The results disclosed that, grey prediction models generate smaller forecasting errors than traditional time series approach for limited data forecastings. Practical implications – Finally, the authors strongly believed that, it could be better to use the improved grey hybrid methodology algorithms in real world model approaches. Originality/value – However, for the large sample of data forecasting under the normality assumptions, the traditional time series methodologies are more suitable than grey methodologies; especially GM(1,1) give some dramatically unsuccessful results than auto regressive intergrated moving average in model pre-post stage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Grey Systems: Theory and Application Emerald Publishing

Grey system based novel approach for stock market forecasting

Loading next page...
 
/lp/emerald-publishing/grey-system-based-novel-approach-for-stock-market-forecasting-7OeniWKesV
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2043-9377
DOI
10.1108/GS-04-2015-0014
Publisher site
See Article on Publisher Site

Abstract

Purpose – Making decisions in finance have been regarded as one of the biggest challenges in the modern economy today; especially, analysing and forecasting unstable data patterns with limited sample observations under the numerous economic policies and reforms. The purpose of this paper is to propose suitable forecasting approach based on grey methods in short-term predictions. Design/methodology/approach – High volatile fluctuations with instability patterns are the common phenomenon in the Colombo Stock Exchange (CSE), Sri Lanka. As a subset of the literature, very few studies have been focused to find the short-term forecastings in CSE. So, the current study mainly attempted to understand the trends and suitable forecasting model in order to predict the future behaviours in CSE during the period from October 2014 to March 2015. As a result of non-stationary behavioural patterns over the period of time, the grey operational models namely GM(1,1), GM(2,1), grey Verhulst and non-linear grey Bernoulli model were used as a comparison purpose. Findings – The results disclosed that, grey prediction models generate smaller forecasting errors than traditional time series approach for limited data forecastings. Practical implications – Finally, the authors strongly believed that, it could be better to use the improved grey hybrid methodology algorithms in real world model approaches. Originality/value – However, for the large sample of data forecasting under the normality assumptions, the traditional time series methodologies are more suitable than grey methodologies; especially GM(1,1) give some dramatically unsuccessful results than auto regressive intergrated moving average in model pre-post stage.

Journal

Grey Systems: Theory and ApplicationEmerald Publishing

Published: Aug 3, 2015

There are no references for this article.