Access the full text.
Sign up today, get DeepDyve free for 14 days.
Analysis of the publisher's behavior plays a vital role in identifying fraudulent publishers in the pay-per-click model of online advertising. However, the vast amount of raw user click data with missing values pose a challenge in analyzing the conduct of publishers. The presence of high cardinality in categorical attributes with multiple possible values has further aggrieved the issue.Design/methodology/approachIn this paper, gradient tree boosting (GTB) learning is used to address the challenges encountered in learning the publishers' behavior from raw user click data and effectively classifying fraudulent publishers.FindingsThe results demonstrate that the GTB effectively classified fraudulent publishers and exhibited significantly improved performance as compared to other learning methods in terms of average precision (60.5 %), recall (57.8 %) and f-measure (59.1%).Originality/valueThe experiments were conducted using publicly available multiclass raw user click dataset and eight other imbalanced datasets to test the GTB's generalizing behavior, while training and testing were done using 10-fold cross-validation. The performance of GTB was evaluated using average precision, recall and f-measure. The performance of GTB learning was also compared with eleven other state-of-the-art individual and ensemble classification models.
Data Technologies and Applications – Emerald Publishing
Published: Apr 12, 2021
Keywords: Pay-per-click; Fraudulent publishers; Click fraud; Gradient tree boosting; Online advertising
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.