Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Glider fuselage-wing junction optimization using CFD and RBF mesh morphing

Glider fuselage-wing junction optimization using CFD and RBF mesh morphing PurposeThe present paper aims to address the description of a numerical optimization procedure, based on mesh morphing, and its application for the improvement of the aerodynamic performance of an industrial glider which suffers of a large separation occurring in the wing–fuselage junction region at high incidence angles.Design/methodology/approachShape variations were applied to the baseline configuration through a mesh morphing technique founded on the mathematical framework of radial basis functions (RBF). The aerodynamic solutions were obtained coupling an RANS code with the mesh morphing tool RBF Morph™. Two shape modifiers were set up to generate a parametric numerical model. An optimization procedure, based on a design of experiment sampling, was set up implementing the fully automated workflow within a high performance computing (HPC) environment. The optimal candidates maximizing the aerodynamic efficiency were identified by means of a cubic RBF response surface approach.FindingsThe separation was significantly reduced, modifying the local geometry of fuselage and fairing and maintaining the wing aerofoil unchanged. A relevant aerodynamic efficiency improvement was finally gained.Practical implicationsThe developed procedure proved to be a very powerful and efficient tool in facing aerodynamic design problems. However, it might be computationally very expensive if a large number of design variables are adopted and, in those cases, the method can be suitably used only within the HPC environment.Originality/valueSuch an optimization study is part of an explorative set of analyses that focused on better addressing the numerical strategies to be used in the development of the EU FP7 Project RBF4AERO. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology: An International Journal Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/glider-fuselage-wing-junction-optimization-using-cfd-and-rbf-mesh-eaLurJKufG

References (24)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1748-8842
DOI
10.1108/AEAT-12-2014-0211
Publisher site
See Article on Publisher Site

Abstract

PurposeThe present paper aims to address the description of a numerical optimization procedure, based on mesh morphing, and its application for the improvement of the aerodynamic performance of an industrial glider which suffers of a large separation occurring in the wing–fuselage junction region at high incidence angles.Design/methodology/approachShape variations were applied to the baseline configuration through a mesh morphing technique founded on the mathematical framework of radial basis functions (RBF). The aerodynamic solutions were obtained coupling an RANS code with the mesh morphing tool RBF Morph™. Two shape modifiers were set up to generate a parametric numerical model. An optimization procedure, based on a design of experiment sampling, was set up implementing the fully automated workflow within a high performance computing (HPC) environment. The optimal candidates maximizing the aerodynamic efficiency were identified by means of a cubic RBF response surface approach.FindingsThe separation was significantly reduced, modifying the local geometry of fuselage and fairing and maintaining the wing aerofoil unchanged. A relevant aerodynamic efficiency improvement was finally gained.Practical implicationsThe developed procedure proved to be a very powerful and efficient tool in facing aerodynamic design problems. However, it might be computationally very expensive if a large number of design variables are adopted and, in those cases, the method can be suitably used only within the HPC environment.Originality/valueSuch an optimization study is part of an explorative set of analyses that focused on better addressing the numerical strategies to be used in the development of the EU FP7 Project RBF4AERO.

Journal

Aircraft Engineering and Aerospace Technology: An International JournalEmerald Publishing

Published: Oct 3, 2016

There are no references for this article.