Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to examine a greenhouse gas (GHG) emission reduction potential from different waste management practices in Croatia. Energetic, environmental and economic benefits can be accomplished by utilizing municipal solid waste (MSW) and landfill gas as fuel in industry and energy sector, which is emphasized in this paper. The paper gives an overview of measures for energy recovery from MSW and landfill gas that could be implemented in Croatia. These measures also represent measures for an additional GHG emission reduction by decreased use of fossil fuels. Design/methodology/approach – A methodology used for emission calculation (kinetic model) is explained. Three different scenarios of GHG reduction in waste management were defined. Implementation of best available techniques in waste management is envisaged by cross‐sectoral impact and effect of respective measures. Findings –This paper gives maximum achievable potential of GHG emission reduction with defined measure implementation dynamics. It was calculated that around one million ton of CO 2 can be avoided in 2020, which is 2.7 percent of projected GHG emissions in Croatia. The energy that could be recovered from waste (8.34 PJ in 2020) is relatively small in relation to the total final energy consumption in Croatia (about 3 percent). Originality/value – The novelty of this work is achieved through integrated approach to GHG emission reduction and energy potential from MSW management in Croatia. The GHG reduction potentials are calculated by taking into account dependencies and interactions between the measures.
Management of Environmental Quality: An International Journal – Emerald Publishing
Published: Sep 20, 2013
Keywords: Municipal solid waste; GHG emissions; Waste management; Waste to energy; Renewable energy source; Croatia
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.