Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Gas flow mechanism and pressure analysis in plates in micro scale gas film

Gas flow mechanism and pressure analysis in plates in micro scale gas film The purpose of this paper is to develop the micro-electro-mechanical systems (MEMS) technology has created the conditions for the study of microfluidic technology. Microfluidic technology has become a very large branch in the MEMS field over the past decade. For aerostatic thrust bearing, the micro-fluidic gas flow in a small-scale gas film between two parallel plates is the subject of many studies. Because of the thin gas in the film, velocity slip occurs at the interface, which causes the gas flow pattern to change in the lubricating film. So, it is important to clarify the mechanism and pressure characteristics in thin firm gas flow.Design/methodology/approachFirst, a new assumption and corresponding models for the flow regime were established by theoretical analysis. Second, computational simulations about pressure distribution and velocity were given by a large-scale atomic/molecular massively parallel simulator (LAMMPS). Third, comparison of the results of LAMMPS simulation and direct simulation Monte Carlo calculation were made to verify the reliability of above results.FindingsThe gas flow mechanism and corresponding regulations are significantly different from traditional pneumo dynamics, which can be described by Navier–Stokes equations accurately. Combining theatrical study and computational results, the stratification theory of the gas film was verified. The research shows that when the gas flow rate increased, the pressure of the gas film decreased, the thickness of the continuous flow layer increased, the thickness of the thin layer decreased and the layered pressure in the gas film disappeared. In this case, velocity slippage could be ignored.Originality/valueFirst, this paper established an analytical model of the gas film support and proposed a film stratification theory. The gas film was divided into the near wall layer, the thin layer and the continuous layer, which was proved by the calculation of LAMMPS flow simulation. The velocity slip boundary conditions theory is feasible. Second, the gas film size of the flat plate is at the micron level, which cannot be observed in its flow regimen, only determined by calculation and simulation. This paper proposes a new model and a new tool to analyze gas flow in gas films. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Lubrication and Tribology Emerald Publishing

Gas flow mechanism and pressure analysis in plates in micro scale gas film

Loading next page...
 
/lp/emerald-publishing/gas-flow-mechanism-and-pressure-analysis-in-plates-in-micro-scale-gas-S6F02KhPb3
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0036-8792
DOI
10.1108/ilt-01-2019-0009
Publisher site
See Article on Publisher Site

Abstract

The purpose of this paper is to develop the micro-electro-mechanical systems (MEMS) technology has created the conditions for the study of microfluidic technology. Microfluidic technology has become a very large branch in the MEMS field over the past decade. For aerostatic thrust bearing, the micro-fluidic gas flow in a small-scale gas film between two parallel plates is the subject of many studies. Because of the thin gas in the film, velocity slip occurs at the interface, which causes the gas flow pattern to change in the lubricating film. So, it is important to clarify the mechanism and pressure characteristics in thin firm gas flow.Design/methodology/approachFirst, a new assumption and corresponding models for the flow regime were established by theoretical analysis. Second, computational simulations about pressure distribution and velocity were given by a large-scale atomic/molecular massively parallel simulator (LAMMPS). Third, comparison of the results of LAMMPS simulation and direct simulation Monte Carlo calculation were made to verify the reliability of above results.FindingsThe gas flow mechanism and corresponding regulations are significantly different from traditional pneumo dynamics, which can be described by Navier–Stokes equations accurately. Combining theatrical study and computational results, the stratification theory of the gas film was verified. The research shows that when the gas flow rate increased, the pressure of the gas film decreased, the thickness of the continuous flow layer increased, the thickness of the thin layer decreased and the layered pressure in the gas film disappeared. In this case, velocity slippage could be ignored.Originality/valueFirst, this paper established an analytical model of the gas film support and proposed a film stratification theory. The gas film was divided into the near wall layer, the thin layer and the continuous layer, which was proved by the calculation of LAMMPS flow simulation. The velocity slip boundary conditions theory is feasible. Second, the gas film size of the flat plate is at the micron level, which cannot be observed in its flow regimen, only determined by calculation and simulation. This paper proposes a new model and a new tool to analyze gas flow in gas films.

Journal

Industrial Lubrication and TribologyEmerald Publishing

Published: Feb 1, 2021

Keywords: MEMS; Knudsen number; Microfluidics; Molecular collision; Velocity slip

References