Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to develop new constitutive models to predict the soil deformation moduli using multi expression programming (MEP). The soil deformation parameters formulated are secant (Es) and reloading (Er) moduli. Design/methodology/approach – MEP is a new branch of classical genetic programming. The models obtained using this method are developed upon a series of plate load tests conducted on different soil types. The best models are selected after developing and controlling several models with different combinations of the influencing parameters. The validation of the models is verified using several statistical criteria. For more verification, sensitivity and parametric analyses are carried out. Findings – The results indicate that the proposed models give precise estimations of the soil deformation moduli. The Es prediction model provides considerably better results than the model developed for Er. The Es formulation outperforms several empirical models found in the literature. The validation phases confirm the efficiency of the models for their general application to the soil moduli estimation. In general, the derived models are suitable for fine‐grained soils. Originality/value – These equations may be used by designers to check the general validity of the laboratory and field test results or to control the solutions developed by more in‐depth deterministic analyses.
Engineering Computations – Emerald Publishing
Published: Feb 24, 2012
Keywords: Soils; Deformation; Modelling; Substructures; Soil deformation moduli; Multi expression programming; Plate load test; Soil physical properties; Prediction
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.