Flying maggots: a smart logistic solution to an enduring medical challenge

Flying maggots: a smart logistic solution to an enduring medical challenge PurposeWhilst there is a growing body of research which discusses the use of remotely piloted aircraft systems (RPAS) (otherwise known as “drones”) to transport medical supplies, almost all reported cases employ short range aircraft. The purpose of this paper is to consider the advantages and challenges inherent in the use of long endurance remotely piloted aircraft systems (LE-RPAS) aircraft to support the provision of medical supplies to remote locations – specifically “medical maggots” used in maggot debridement therapy (MDT) wound care.Design/methodology/approachAfter introducing both MDT and the LE-RPAS technology, the paper first reports on the outcomes of a case study involving 11 semi-structured interviews with individuals who either have experience and expertise in the use of LE-RPAS or in the provision of healthcare to remote communities in Western Australia. The insights gained from this case study are then synthesised to assess the feasibility of LE-RPAS assisted delivery of medical maggots to those living in such geographically challenging locations.FindingsNo insuperable challenges to the concept of using LE-RPAS to transport medical maggots were uncovered during this research – rather, those who contributed to the investigations from across the spectrum from operators to users, were highly supportive of the overall concept.Practical implicationsThe paper offers an assessment of the feasibility of the use of LE-RPAS to transport medical maggots. In doing so, it highlights a number of infrastructure and organisational challenges that would need to be overcome to operationalise this concept. Whilst the particular context of the paper relates to the provision of medical support to a remote location of a developed country, the core benefits and challenges that are exposed relate equally to the use of LE-RPAS in a post-disaster response. To this end, the paper offers a high-level route map to support the implementation of the concept.Social implicationsThe paper proposes a novel approach to the efficient and effective provision of medical care to remote Australian communities which, in particular, reduces the need to travel significant distances to obtain treatment. In doing so, it emphasises the importance in gaining acceptance of both the use of MDT and also the operation of RPAS noting that these have previously been employed in a military, as distinct from humanitarian, context.Originality/valueThe paper demonstrates how the use of LE-RPAS to support remote communities offers the potential to deliver healthcare at reduced cost compared to conventional approaches. The paper also underlines the potential benefits of the use of MDT to address the growing wound burdens in remote communities. Finally, the paper expands on the existing discussion of the use of RPAS to include its capability to act as the delivery mechanism for medical maggots. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Humanitarian Logistics and Supply Chain Management Emerald Publishing

Flying maggots: a smart logistic solution to an enduring medical challenge

Loading next page...
 
/lp/emerald-publishing/flying-maggots-a-smart-logistic-solution-to-an-enduring-medical-kJfPP0Bi7E
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2042-6747
DOI
10.1108/JHLSCM-02-2017-0003
Publisher site
See Article on Publisher Site

Abstract

PurposeWhilst there is a growing body of research which discusses the use of remotely piloted aircraft systems (RPAS) (otherwise known as “drones”) to transport medical supplies, almost all reported cases employ short range aircraft. The purpose of this paper is to consider the advantages and challenges inherent in the use of long endurance remotely piloted aircraft systems (LE-RPAS) aircraft to support the provision of medical supplies to remote locations – specifically “medical maggots” used in maggot debridement therapy (MDT) wound care.Design/methodology/approachAfter introducing both MDT and the LE-RPAS technology, the paper first reports on the outcomes of a case study involving 11 semi-structured interviews with individuals who either have experience and expertise in the use of LE-RPAS or in the provision of healthcare to remote communities in Western Australia. The insights gained from this case study are then synthesised to assess the feasibility of LE-RPAS assisted delivery of medical maggots to those living in such geographically challenging locations.FindingsNo insuperable challenges to the concept of using LE-RPAS to transport medical maggots were uncovered during this research – rather, those who contributed to the investigations from across the spectrum from operators to users, were highly supportive of the overall concept.Practical implicationsThe paper offers an assessment of the feasibility of the use of LE-RPAS to transport medical maggots. In doing so, it highlights a number of infrastructure and organisational challenges that would need to be overcome to operationalise this concept. Whilst the particular context of the paper relates to the provision of medical support to a remote location of a developed country, the core benefits and challenges that are exposed relate equally to the use of LE-RPAS in a post-disaster response. To this end, the paper offers a high-level route map to support the implementation of the concept.Social implicationsThe paper proposes a novel approach to the efficient and effective provision of medical care to remote Australian communities which, in particular, reduces the need to travel significant distances to obtain treatment. In doing so, it emphasises the importance in gaining acceptance of both the use of MDT and also the operation of RPAS noting that these have previously been employed in a military, as distinct from humanitarian, context.Originality/valueThe paper demonstrates how the use of LE-RPAS to support remote communities offers the potential to deliver healthcare at reduced cost compared to conventional approaches. The paper also underlines the potential benefits of the use of MDT to address the growing wound burdens in remote communities. Finally, the paper expands on the existing discussion of the use of RPAS to include its capability to act as the delivery mechanism for medical maggots.

Journal

Journal of Humanitarian Logistics and Supply Chain ManagementEmerald Publishing

Published: Aug 7, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off