Access the full text.
Sign up today, get DeepDyve free for 14 days.
A finite element formulation for flexure of isotropic plates based on a recent refined theory is developed. The refined theory incorporates effects of transverse shear, transverse normal stress and transverse normal strain. The Galerkin finite element method was used to develop the finite element equations for both plate bending and inplane problems. The performance of the proposed finite element model was evaluated by solving problems of uniformly loaded thick plates with different support conditions. The results of the present formulation are compared with MindlinReissner and elasticity solutions.
Engineering Computations – Emerald Publishing
Published: Apr 1, 1991
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.