Finite element analysis of CFRP-externally strengthened reinforced concrete beams subjected to three-point bending

Finite element analysis of CFRP-externally strengthened reinforced concrete beams subjected to... PurposeThis paper aims to develop a non-linear finite element model predicting the response of externally strengthened beams under a three-point flexure test.Design/methodology/approachThe ANSYS software is used for modeling. SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A parametric study was carried out. The effects of compressive strength, Young’s modulus, layers number and carbon fiber-reinforced polymer thickness on beam behavior are analyzed. A comparative study between the non-linear finite element and analytical models, including the ACI 440.2 R-08 model, and experimental data is also carried out.FindingsA comparative study of the non-linear finite element results with analytical models, including the ACI 440.2 R-08 model and experimental data for different parameters, shows that the strengthened beams possessed better resistance to cracks. In general, the finite element model’s results are in good agreement with the experimental test data.Practical implicationsThis model will predict the strengthened beams behavior and can describe the beams physical conditions, yielding the results that can be interpreted in the structural study context without using a laboratory testing.Originality/valueOn the basis of the results, a good match is found between the model results and experimental data at all stages of loading the tested samples. Crack models obtained in the non-linear finite element model in the beams are also presented. The submitted finite element model can be used to predict the behavior of the reinforced concrete beam. Also, the comparative study between an analytical model proposed by of current code of ACI 440.2 R-08 and finite element analysis is investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png World Journal of Engineering Emerald Publishing

Finite element analysis of CFRP-externally strengthened reinforced concrete beams subjected to three-point bending

Loading next page...
 
/lp/emerald-publishing/finite-element-analysis-of-cfrp-externally-strengthened-reinforced-6teTNrk9Do
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1708-5284
DOI
10.1108/WJE-04-2019-0121
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to develop a non-linear finite element model predicting the response of externally strengthened beams under a three-point flexure test.Design/methodology/approachThe ANSYS software is used for modeling. SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A parametric study was carried out. The effects of compressive strength, Young’s modulus, layers number and carbon fiber-reinforced polymer thickness on beam behavior are analyzed. A comparative study between the non-linear finite element and analytical models, including the ACI 440.2 R-08 model, and experimental data is also carried out.FindingsA comparative study of the non-linear finite element results with analytical models, including the ACI 440.2 R-08 model and experimental data for different parameters, shows that the strengthened beams possessed better resistance to cracks. In general, the finite element model’s results are in good agreement with the experimental test data.Practical implicationsThis model will predict the strengthened beams behavior and can describe the beams physical conditions, yielding the results that can be interpreted in the structural study context without using a laboratory testing.Originality/valueOn the basis of the results, a good match is found between the model results and experimental data at all stages of loading the tested samples. Crack models obtained in the non-linear finite element model in the beams are also presented. The submitted finite element model can be used to predict the behavior of the reinforced concrete beam. Also, the comparative study between an analytical model proposed by of current code of ACI 440.2 R-08 and finite element analysis is investigated.

Journal

World Journal of EngineeringEmerald Publishing

Published: Dec 12, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off