Fatigue life assessment of crankshaft with increased horsepower

Fatigue life assessment of crankshaft with increased horsepower PurposeThe purpose of this paper is to analyze the fatigue life of the crankshaft in an engine with increased horsepower.Design/methodology/approachThe applied load on the powertrain components was calculated through a dynamic analysis. Then, to estimate the induced stress in every crank angle, the calculated loads in different engine speeds were applied on the crankshaft. Finally, the critical plane fatigue theories in addition to URM standard were used to estimate the damage and fatigue life of the crankshaft with the increased power.FindingsIt was found that a simultaneous increase of gas pressure and engine speed by 30 percent will cause an increase of maximum applied load on the crankshaft by 25 percent. It was also found that while the results of finite element (FE) method predict an infinite life for the crankshaft after increasing the power, the URM method predicts an engine failure for the increased power application. In this study, the crankpin fillet is introduced as the most critical area of the crankshaft.Originality/valueIncreasing the power of the internal combustion engines without changing its main components has been of high interest; however, the failure associated with the increased load as the result of increased power has been a big challenge for that purpose. Moreover, although URM standard provided an efficient practice to evaluate a crankshaft fatigue life, using FE analysis may provide more reliability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Structural Integrity Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/fatigue-life-assessment-of-crankshaft-with-increased-horsepower-RyehXCagP8
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1757-9864
DOI
10.1108/IJSI-04-2018-0020
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to analyze the fatigue life of the crankshaft in an engine with increased horsepower.Design/methodology/approachThe applied load on the powertrain components was calculated through a dynamic analysis. Then, to estimate the induced stress in every crank angle, the calculated loads in different engine speeds were applied on the crankshaft. Finally, the critical plane fatigue theories in addition to URM standard were used to estimate the damage and fatigue life of the crankshaft with the increased power.FindingsIt was found that a simultaneous increase of gas pressure and engine speed by 30 percent will cause an increase of maximum applied load on the crankshaft by 25 percent. It was also found that while the results of finite element (FE) method predict an infinite life for the crankshaft after increasing the power, the URM method predicts an engine failure for the increased power application. In this study, the crankpin fillet is introduced as the most critical area of the crankshaft.Originality/valueIncreasing the power of the internal combustion engines without changing its main components has been of high interest; however, the failure associated with the increased load as the result of increased power has been a big challenge for that purpose. Moreover, although URM standard provided an efficient practice to evaluate a crankshaft fatigue life, using FE analysis may provide more reliability.

Journal

International Journal of Structural IntegrityEmerald Publishing

Published: Feb 4, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off