Fabrication of Mn–Co–Ni-coated layer on AISI 304 stainless steel for protection of Cr evaporation by electroplating process

Fabrication of Mn–Co–Ni-coated layer on AISI 304 stainless steel for protection of Cr... PurposeThis study aims to improve the oxidation resistance of SS304 stainless steel by fabrication of Mn–Co–Ni-coated layer. Mn–Co–Ni coating with the thickness ranging from 1.76 to 8.50 micron were prepared by electroplating process on SS304 stainless steel, focusing on the plating time which play significant roles on the performance of the film thickness and crystallize size.Design/methodology/approachMn–Co–Ni coating layer was applied on AISI 304 stainless steel using electroplating process with solution consisted of cobalt sulfate (CoSO4), manganese sulfate (MnSO4) and nickel sulfate (NiSO4). Variation of Mn–Co–Ni coating, the morphology of the film and oxidation kinetics were investigated by using scanning electron microscopy and x-ray diffraction analysis. Furthermore, the sample with coating layer was tested by oxidation and Cr evaporation test.FindingsFrom the formation parameter due to plating time for the conversion coating, it was found that plating time plays significant roles in the performance of the coating thickness and crystallize size. The crystallize size has an inverse relation to the full width at half maximum of diffraction peak. Film thickness higher than 6.07 micron causes a decrease in oxidation resistance and an increase of Cr evaporation from SS304 stainless steel. In this study, the Mn–Co–Ni coating with a thickness lower than 3.77 micron showed coating protection of oxidation better than SS304 substrate.Originality/valueThe effect of coating thickness was investigated to understand the properties of the coating. Furthermore, oxidation and Cr evaporation test were applied to evaluate the oxidation resistance of the coating layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Anti-Corrosion Methods and Materials Emerald Publishing

Fabrication of Mn–Co–Ni-coated layer on AISI 304 stainless steel for protection of Cr evaporation by electroplating process

Loading next page...
 
/lp/emerald-publishing/fabrication-of-mn-co-ni-coated-layer-on-aisi-304-stainless-steel-for-SArnqntAdq
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0003-5599
DOI
10.1108/ACMM-02-2019-2075
Publisher site
See Article on Publisher Site

Abstract

PurposeThis study aims to improve the oxidation resistance of SS304 stainless steel by fabrication of Mn–Co–Ni-coated layer. Mn–Co–Ni coating with the thickness ranging from 1.76 to 8.50 micron were prepared by electroplating process on SS304 stainless steel, focusing on the plating time which play significant roles on the performance of the film thickness and crystallize size.Design/methodology/approachMn–Co–Ni coating layer was applied on AISI 304 stainless steel using electroplating process with solution consisted of cobalt sulfate (CoSO4), manganese sulfate (MnSO4) and nickel sulfate (NiSO4). Variation of Mn–Co–Ni coating, the morphology of the film and oxidation kinetics were investigated by using scanning electron microscopy and x-ray diffraction analysis. Furthermore, the sample with coating layer was tested by oxidation and Cr evaporation test.FindingsFrom the formation parameter due to plating time for the conversion coating, it was found that plating time plays significant roles in the performance of the coating thickness and crystallize size. The crystallize size has an inverse relation to the full width at half maximum of diffraction peak. Film thickness higher than 6.07 micron causes a decrease in oxidation resistance and an increase of Cr evaporation from SS304 stainless steel. In this study, the Mn–Co–Ni coating with a thickness lower than 3.77 micron showed coating protection of oxidation better than SS304 substrate.Originality/valueThe effect of coating thickness was investigated to understand the properties of the coating. Furthermore, oxidation and Cr evaporation test were applied to evaluate the oxidation resistance of the coating layer.

Journal

Anti-Corrosion Methods and MaterialsEmerald Publishing

Published: Sep 2, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off