Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Fabrication of high-aspect-ratio grooves with high surface quality by using femtosecond laser

Fabrication of high-aspect-ratio grooves with high surface quality by using femtosecond laser The purpose of this study is to fabricate high-aspect-ratio grooves with high surface quality by femtosecond laser (FS) to improve the machinability of silicon carbide (SiC) and optimize the process parameters in micromechanical applications.Design/methodology/approachFour contrast experiments are reported to characterize the FS laser grooving process for SiC with polarization direction, crystal orientation, multi-pass scanning and z layer feed, respectively. The effects of different experimental conditions on the groove characteristics, material removal rate (MRR), aspect ratio, heat affected zone (HAZ) and surface roughness Ra are analyzed.FindingsThe influence of increasing laser fluence and multi-scanning pass on the groove depth is greater than on the groove width. The MRR, aspect ratio, HAZ and Ra increased with the increase of laser fluence and multi-scanning pass. The direction of laser polarization affects the direction of hot electron injection but has little effect on the material characteristics. FS laser ablation is an isotropic process and there is no obvious change in different crystal orientations. The z-layer feed can significantly increase the groove width and depth and reduce HAZ and Ra. The maximum aspect ratio of 82.67% was fabricated.Originality/valueThe results contribute to the understanding of the removal mechanism and reduce the friction of the microfluidic device and improve the flowability in the FS laser ablation of SiC. This paper provides suggestions for the selection of suitable process parameters and provides a wider possibility for the application of micro-texture on SiC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Lubrication and Tribology Emerald Publishing

Fabrication of high-aspect-ratio grooves with high surface quality by using femtosecond laser

Loading next page...
 
/lp/emerald-publishing/fabrication-of-high-aspect-ratio-grooves-with-high-surface-quality-by-2O8W5TVm0F

References (36)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0036-8792
DOI
10.1108/ilt-11-2020-0432
Publisher site
See Article on Publisher Site

Abstract

The purpose of this study is to fabricate high-aspect-ratio grooves with high surface quality by femtosecond laser (FS) to improve the machinability of silicon carbide (SiC) and optimize the process parameters in micromechanical applications.Design/methodology/approachFour contrast experiments are reported to characterize the FS laser grooving process for SiC with polarization direction, crystal orientation, multi-pass scanning and z layer feed, respectively. The effects of different experimental conditions on the groove characteristics, material removal rate (MRR), aspect ratio, heat affected zone (HAZ) and surface roughness Ra are analyzed.FindingsThe influence of increasing laser fluence and multi-scanning pass on the groove depth is greater than on the groove width. The MRR, aspect ratio, HAZ and Ra increased with the increase of laser fluence and multi-scanning pass. The direction of laser polarization affects the direction of hot electron injection but has little effect on the material characteristics. FS laser ablation is an isotropic process and there is no obvious change in different crystal orientations. The z-layer feed can significantly increase the groove width and depth and reduce HAZ and Ra. The maximum aspect ratio of 82.67% was fabricated.Originality/valueThe results contribute to the understanding of the removal mechanism and reduce the friction of the microfluidic device and improve the flowability in the FS laser ablation of SiC. This paper provides suggestions for the selection of suitable process parameters and provides a wider possibility for the application of micro-texture on SiC.

Journal

Industrial Lubrication and TribologyEmerald Publishing

Published: Aug 3, 2021

Keywords: Femtosecond laser; Silicon carbide; Surface quality; High-aspect-ratio; Grooves

There are no references for this article.