Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to focus on the fabrication and characterization of mixed thin-/thick-film thermoelectric microgenerators, based on magnetron sputtered constantan (copper–nickel alloy) and screen-printed silver. To improve the adhesion of the constantan layer to the applied substrates, the additional chromium sublayer was used. The aim of the study was to investigate the influence of chromium sublayer on the electrical and thermoelectric properties of such hybrid microgenerators.Design/methodology/approachFabrication of such structures consisted of several steps – magnetron sputtering of the chromium and then constantan layer, exposing the first arms of thermocouples, applying the second arms by screen-printing technology and firing the prepared structures in a belt furnace. The structures were made both on Al2O3 (alumina) and low temperature co-fired ceramics (LTCC) substrates.FindingsTo the best of the authors’ knowledge, for the first time, laser ablation process was applied to fabricate the first arms of thermocouples from a layer of constantan only or constantan with a chromium sublayer. Geometric measurements have shown that the mapping of mask pattern by laser ablation technique is very accurate.Originality/valueThe determined Seebeck coefficient of the realized structures was about 40.4 µV/K. After firing the exemplary structures at 850°C peak temperature, Seebeck coefficient is increased to an average value of 51 µV/K.
Microelectronics International – Emerald Publishing
Published: May 21, 2020
Keywords: LTCC; Silver; Thermoelectricity; Microgenerator; Constantan; Alumina
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.