Exponential approximation for maintained Weibull distributed component

Exponential approximation for maintained Weibull distributed component Exponential distribution is widely used in reliability and maintainability studies although it is well known that the constant failure rate assumption may not be valid. The purpose of this paper is to investigate the use of exponential distribution as an approximation. In fact, for components undergoing regular maintenance or replacement, the exponential assumption can be acceptable. In this paper, the exponential approximation for regularly maintained Weibull component is studied. The approximated exponential distribution using the average failure rate is compared with the exact reliability. The asymptotic relative error is derived, which can be used to adjust the exponential approximation when needed. Based on the framework of exponential approximation for Weibull distributed components, the problems of decision-making regarding the optimal maintenance time and spare allocation are also addressed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Quality in Maintenance Engineering Emerald Publishing

Exponential approximation for maintained Weibull distributed component

Loading next page...
 
/lp/emerald-publishing/exponential-approximation-for-maintained-weibull-distributed-component-GzlH2ubuf9
Publisher
Emerald Publishing
Copyright
Copyright © 2000 MCB UP Ltd. All rights reserved.
ISSN
1355-2511
DOI
10.1108/13552510010346761
Publisher site
See Article on Publisher Site

Abstract

Exponential distribution is widely used in reliability and maintainability studies although it is well known that the constant failure rate assumption may not be valid. The purpose of this paper is to investigate the use of exponential distribution as an approximation. In fact, for components undergoing regular maintenance or replacement, the exponential assumption can be acceptable. In this paper, the exponential approximation for regularly maintained Weibull component is studied. The approximated exponential distribution using the average failure rate is compared with the exact reliability. The asymptotic relative error is derived, which can be used to adjust the exponential approximation when needed. Based on the framework of exponential approximation for Weibull distributed components, the problems of decision-making regarding the optimal maintenance time and spare allocation are also addressed.

Journal

Journal of Quality in Maintenance EngineeringEmerald Publishing

Published: Dec 1, 2000

Keywords: Reliability; Decision making; Optimization

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off