Access the full text.
Sign up today, get DeepDyve free for 14 days.
Advanced fibre-reinforced polymer (FRP) composites have been increasingly used over the past two decades for strengthening, upgrading and restoring degraded civil engineering infrastructure. Substantial experimental investigations have been conducted in recent years to understand the compressive behaviour of FRP-confined concrete columns. A considerable number of confinement models to predict the compressive behaviour of FRP-strengthened concrete columns have been developed from the results of these experimental investigations. The purpose of this paper is to present a comprehensive review of experimental investigations and theoretical models of circular and non-circular concrete columns confined with FRP reinforcement.Design/methodology/approachThe paper reviews previous experimental test results on circular and non-circular concrete columns confined with FRP reinforcement under concentric and eccentric loading conditions and highlights the behaviour and mechanics of FRP confinement in these columns. The paper also reviews existing confinement models for concrete columns confined with FRP composites in both circular and non-circular sections.FindingsThis paper demonstrates that the performance and effectiveness of FRP confinement in concrete columns have been extensively investigated and proven effective in enhancing the structural performance and ductility of strengthened columns. The strength and ductility enhancement depend on the number of FRP layers, concrete compressive strength, corner radius for non-circular columns and intensity of load eccentricity for eccentrically loaded columns. The impact of existing theoretical models and directions for future research are also presented.Originality/valuePotential researchers will gain insight into existing experimental and theoretical studies and future research directions.
World Journal of Engineering – Emerald Publishing
Published: Aug 20, 2019
Keywords: FRP composites; Circular and non-circular columns; Confinement; Stress–strain model
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.