Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Experimental investigation of mechanical properties and physical characteristics of concrete under standard fire exposure

Experimental investigation of mechanical properties and physical characteristics of concrete... PurposeThis paper aims to explain the influence of Standard Fire as per ISO 834 on the strength and microstructure properties of concrete specimens with different strength grade.Design/methodology/approachThe strength grades of concrete considered for the experimental investigation were Fck20, Fck30, Fck40 and Fck50. The specimens were heated up to 1, 2, 3 and 4 h as per standard fire curve. Effect of elevated temperature on compressive and flexural behavior of specimens with various strength grades was examined. Effects of age of concrete, weight loss, surface characteristics and thermal crack pattern were also investigated.FindingsExperimental investigation shows that strength grade, duration of exposure and age of concrete are the key parameters affecting the residual strength of concrete. For the beams exposed to 3 and 4 h of heating, the residual flexural strength was found to be so insignificant that the specimens were not able to even sustain their own weight. The loss in compressive and flexural strength of Fck50 concrete specimens heated up to 1 h were found to be 26.41 and 86.03 per cent of the original unheated concrete, respectively. The weight loss was found to be more for higher grade concrete specimens, and it was about 8.38 per cent for Fck50 concrete. Regression analysis was carried out to establish the empirical relation between residual strength and grade of concrete. Scanning electron microscopy and thermogravimetric analysis were carried out to examine the damage level of fire-affected concrete specimens.Originality/valueEmpirical relationship was developed to determine the residual strength of concrete exposed to elevate temperature, and this will be useful for design applications. This database may be useful for identifying member strength of reinforced beams subjected to various durations of heating so that suitable repair technique can be adopted from the available database. It will be useful to identify the proper grade of concrete with regard to fire endurance, in the case of concrete under compression or flexure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Engineering, Design and Technology Emerald Publishing

Experimental investigation of mechanical properties and physical characteristics of concrete under standard fire exposure

Loading next page...
 
/lp/emerald-publishing/experimental-investigation-of-mechanical-properties-and-physical-i6EkupA0t2
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1726-0531
DOI
10.1108/JEDT-09-2018-0159
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to explain the influence of Standard Fire as per ISO 834 on the strength and microstructure properties of concrete specimens with different strength grade.Design/methodology/approachThe strength grades of concrete considered for the experimental investigation were Fck20, Fck30, Fck40 and Fck50. The specimens were heated up to 1, 2, 3 and 4 h as per standard fire curve. Effect of elevated temperature on compressive and flexural behavior of specimens with various strength grades was examined. Effects of age of concrete, weight loss, surface characteristics and thermal crack pattern were also investigated.FindingsExperimental investigation shows that strength grade, duration of exposure and age of concrete are the key parameters affecting the residual strength of concrete. For the beams exposed to 3 and 4 h of heating, the residual flexural strength was found to be so insignificant that the specimens were not able to even sustain their own weight. The loss in compressive and flexural strength of Fck50 concrete specimens heated up to 1 h were found to be 26.41 and 86.03 per cent of the original unheated concrete, respectively. The weight loss was found to be more for higher grade concrete specimens, and it was about 8.38 per cent for Fck50 concrete. Regression analysis was carried out to establish the empirical relation between residual strength and grade of concrete. Scanning electron microscopy and thermogravimetric analysis were carried out to examine the damage level of fire-affected concrete specimens.Originality/valueEmpirical relationship was developed to determine the residual strength of concrete exposed to elevate temperature, and this will be useful for design applications. This database may be useful for identifying member strength of reinforced beams subjected to various durations of heating so that suitable repair technique can be adopted from the available database. It will be useful to identify the proper grade of concrete with regard to fire endurance, in the case of concrete under compression or flexure.

Journal

Journal of Engineering, Design and TechnologyEmerald Publishing

Published: Aug 10, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month