Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to present an experimental investigation and optimization of a low-temperature thermoelectric module to examine the influence of the main operating conditions.Design/methodology/approachIn this work, a comparison was made by varying the various operating parameters such as heat source temperature, the flow rate of the cold fluid and the external load resistance. A Taguchi method was applied to optimize the parameters of the system. Three factors, including the external load resistance, mass flow rate of water (at the heat sink side) and heater temperature (at the heat source side) along with different levels were taken into account. Analysis of variance was used to determine the significance and percentage contribution of each parameter.FindingsThe experimental results show that the maximum power output 8.22W and the maximum conversion efficiency 1.11 per cent were obtained at the heater temperature of 240°C, the cold fluid mass flow rate of 0.017 kg/s, module temperature difference of 45°C and the load resistance of 5 O. It was observed that the optimum parameter levels for maximum power output determined as 5 O external load resistance, 0.17 kg/s mass flow rate of water and 240°C heater temperature (A1B3C3). It reflects that these parameters influence on the optimum conditions. The heater temperature is the most significant parameter on the power output of the thermoelectric module.Originality/valueIt is clear from the confirmation test that experimental values and the predicted values are in good agreement.
World Journal of Engineering – Emerald Publishing
Published: Jun 14, 2019
Keywords: Conversion efficiency; Power output; Thermoelectric module; Waste heat recovery
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.