Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Exact laser beam positioning for measurement of vegetation vitality

Exact laser beam positioning for measurement of vegetation vitality PurposeThe purpose of this paper is to present a novel application for a newly developed Technical Vision System (TVS), which uses a laser scanner and dynamic triangulation, to determine the vitality of agriculture vegetation. This vision system, installed on an unmanned aerial vehicle, shall measure the reflected laser energy and thereby determine the normalized differenced vegetation index.Design/methodology/approachThe newly developed TVS shall be installed on the front part of the unmanned aerial vehicle, to perform line-by-line scan in the vision system field-of-view. The TVS uses high-quality DC motors, instead of previously researched low-quality DC motors, to eliminate the existence of two mutually exclusive conditions, for exact positioning of a DC motor shaft. The use of high-quality DC motors reduces the positioning error after control.FindingsPresent paper emphasizes the exact laser beam positioning in the field-of-view of a TVS. By use of high-quality instead of low-quality DC motors, a significant reduced positioning time was achieved, maintaining the relative angular position error less than 1 per cent. Best results were achieved, by realizing a quasi-continuous control, using a high pulse-width modulated duty cycle resolution and a high execution frequency of the positioning algorithm.Originality/valueThe originality of present paper is represented by the novel application of the newly developed TVS in the field of agriculture. The vitality of vegetation shall be determined by measuring the reflected laser energy of a scanned agriculture zone. The paper’s main focus is on the exact laser beam positioning within the TVS field-of-view, using high-quality DC motors in closed-loop position control configuration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Robot: An International Journal Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/exact-laser-beam-positioning-for-measurement-of-vegetation-vitality-rSFs6EhRib
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0143-991X
DOI
10.1108/IR-11-2016-0297
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to present a novel application for a newly developed Technical Vision System (TVS), which uses a laser scanner and dynamic triangulation, to determine the vitality of agriculture vegetation. This vision system, installed on an unmanned aerial vehicle, shall measure the reflected laser energy and thereby determine the normalized differenced vegetation index.Design/methodology/approachThe newly developed TVS shall be installed on the front part of the unmanned aerial vehicle, to perform line-by-line scan in the vision system field-of-view. The TVS uses high-quality DC motors, instead of previously researched low-quality DC motors, to eliminate the existence of two mutually exclusive conditions, for exact positioning of a DC motor shaft. The use of high-quality DC motors reduces the positioning error after control.FindingsPresent paper emphasizes the exact laser beam positioning in the field-of-view of a TVS. By use of high-quality instead of low-quality DC motors, a significant reduced positioning time was achieved, maintaining the relative angular position error less than 1 per cent. Best results were achieved, by realizing a quasi-continuous control, using a high pulse-width modulated duty cycle resolution and a high execution frequency of the positioning algorithm.Originality/valueThe originality of present paper is represented by the novel application of the newly developed TVS in the field of agriculture. The vitality of vegetation shall be determined by measuring the reflected laser energy of a scanned agriculture zone. The paper’s main focus is on the exact laser beam positioning within the TVS field-of-view, using high-quality DC motors in closed-loop position control configuration.

Journal

Industrial Robot: An International JournalEmerald Publishing

Published: Jun 19, 2017

References