Evaluating credibility of interest reflection on Twitter

Evaluating credibility of interest reflection on Twitter Purpose – The purpose of this article was to confirm whether users’ interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach – Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users’ interests by analyzing user access profiles. Findings – The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value – As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user’s Web view and Twitter submission background with some different context factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Web Information Systems Emerald Publishing

Evaluating credibility of interest reflection on Twitter

Loading next page...
 
/lp/emerald-publishing/evaluating-credibility-of-interest-reflection-on-twitter-7aYcsBxT40
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1744-0084
DOI
10.1108/IJWIS-04-2014-0019
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this article was to confirm whether users’ interests are reflected by tweeted Web pages, and to evaluate the credibility of interest reflection of tweeted Web pages. Design/methodology/approach – Interest reflection of Twitter is investigated based on the context of sharing behavior. A context-oriented approach is proposed to evaluate the interest reflection of tweeted Web pages based on machine learning. Some different distribution models of similarity are present, and infer whether tweeted Web pages reflect respective users’ interests by analyzing user access profiles. Findings – The analysis of browsing behaviors finds that many users partially hide their own concerns, hobbies and interests, and emphasize the concerns about social phenomenon. The extensive experimental results showed the context-oriented approach is effective on real net view data. Originality/value – As the first-of-its-kind study on evaluating the credibility of interest reflection on Twitter, extensive experiments have been conducted on the data sets containing real net view data. For higher accuracy and less subjectivity, various features are generated from user’s Web view and Twitter submission background with some different context factors.

Journal

International Journal of Web Information SystemsEmerald Publishing

Published: Nov 11, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off