Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Estimating good design attributes from generalized drivers to provide early assistance to design requirements analysis

Estimating good design attributes from generalized drivers to provide early assistance to design... PurposeThis paper aims to examine the perceptions of good design attributes and propose a model to estimate their relative importance through fundamental drivers. Design activities must understand and meet customer and producer expectations and deliver products in a profitable manner. Requirements analysis is conducted to understand customer expectations, but in new product development, this information can be available too late in the development cycle. Moreover, customer needs are often unclear to designers at early stages of design, with customers often unable to articulate their requirements or unaware of how a new product may solve problems or create complications. Evaluating non-product-specific drivers to generalized good product design attributes can help designers estimate important factors in early requirements analysis.Design/methodology/approachQuantification of the weight designers place in their mental models of what makes up a good product is determined from linear regression modeling, providing a more concrete evaluation of inherently subjective perceptions. A survey is deployed using Mechanical TurkTM to collect perceptions of good product attributes and drivers through product case studies. Data are analyzed using a utility theory framework and importance of attributes is estimated from the importance of drivers.FindingsA generalized model that estimates good design attributes from drivers is presented. This study also demonstrates that non-product-specific attribute importance can be extracted from specific product cases. An application example demonstrating the relative importance of good design attributes is given for different types of watches.Research limitations/implicationsThe approach is intended to supplement ordinary product design and development processes, and is not intended to replace market research and concept testing activities. Model coefficient weights are dependent on the quality of the data that was collected, which has limitations. While the current study included confounding variables, introducing interactions into the model could make attribute importance prediction more accurate.Practical implicationsWhile design requirements analysis is now central to modern design practice, these estimates can be available too late in the development cycle, especially when customers have no experience with the product type. The developed model quantifies design attributes that consumers, manufacturers and society as a whole use to distinguish if a product will be considered well designed. Product designers can better focus their development resources toward good design attributes based on guidance generated from generalized drivers.Originality/valueHistorically, requirements analysis is undertaken specific to the product being designed. This paper provides a model to give designers early guidance in a non-product-specific framework. The framework also considers good design attributes as holistic, including societal and producer concerns. Although all of the proposed good design attributes can be associated with a well-engineered product, it is unnecessary to design a product that performs exceptionally on every attribute. This model provides identification of the handful of attributes that can make the most significant difference for design success. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Engineering Design and Technology Emerald Publishing

Estimating good design attributes from generalized drivers to provide early assistance to design requirements analysis

Loading next page...
 
/lp/emerald-publishing/estimating-good-design-attributes-from-generalized-drivers-to-provide-GG0jRlo9ae

References (42)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1726-0531
DOI
10.1108/JEDT-06-2016-0033
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to examine the perceptions of good design attributes and propose a model to estimate their relative importance through fundamental drivers. Design activities must understand and meet customer and producer expectations and deliver products in a profitable manner. Requirements analysis is conducted to understand customer expectations, but in new product development, this information can be available too late in the development cycle. Moreover, customer needs are often unclear to designers at early stages of design, with customers often unable to articulate their requirements or unaware of how a new product may solve problems or create complications. Evaluating non-product-specific drivers to generalized good product design attributes can help designers estimate important factors in early requirements analysis.Design/methodology/approachQuantification of the weight designers place in their mental models of what makes up a good product is determined from linear regression modeling, providing a more concrete evaluation of inherently subjective perceptions. A survey is deployed using Mechanical TurkTM to collect perceptions of good product attributes and drivers through product case studies. Data are analyzed using a utility theory framework and importance of attributes is estimated from the importance of drivers.FindingsA generalized model that estimates good design attributes from drivers is presented. This study also demonstrates that non-product-specific attribute importance can be extracted from specific product cases. An application example demonstrating the relative importance of good design attributes is given for different types of watches.Research limitations/implicationsThe approach is intended to supplement ordinary product design and development processes, and is not intended to replace market research and concept testing activities. Model coefficient weights are dependent on the quality of the data that was collected, which has limitations. While the current study included confounding variables, introducing interactions into the model could make attribute importance prediction more accurate.Practical implicationsWhile design requirements analysis is now central to modern design practice, these estimates can be available too late in the development cycle, especially when customers have no experience with the product type. The developed model quantifies design attributes that consumers, manufacturers and society as a whole use to distinguish if a product will be considered well designed. Product designers can better focus their development resources toward good design attributes based on guidance generated from generalized drivers.Originality/valueHistorically, requirements analysis is undertaken specific to the product being designed. This paper provides a model to give designers early guidance in a non-product-specific framework. The framework also considers good design attributes as holistic, including societal and producer concerns. Although all of the proposed good design attributes can be associated with a well-engineered product, it is unnecessary to design a product that performs exceptionally on every attribute. This model provides identification of the handful of attributes that can make the most significant difference for design success.

Journal

Journal of Engineering Design and TechnologyEmerald Publishing

Published: Jun 5, 2017

There are no references for this article.