Ensemble majority voting classifier for speech emotion recognition and prediction

Ensemble majority voting classifier for speech emotion recognition and prediction Purpose – The purpose of this paper is to understand the emotional state of a human being by capturing the speech utterances that are used during common conversation. Human beings except of thinking creatures are also sentimental and emotional organisms. There are six universal basic emotions plus a neutral emotion: happiness, surprise, fear, sadness, anger, disgust and neutral. Design/methodology/approach – It is proved that, given enough acoustic evidence, the emotional state of a person can be classified by an ensemble majority voting classifier. The proposed ensemble classifier is constructed over three base classifiers: k nearest neighbors, C4.5 and support vector machine (SVM) polynomial kernel. Findings – The proposed ensemble classifier achieves better performance than each base classifier. It is compared with two other ensemble classifiers: one‐against‐all (OAA) multiclass SVM with radial basis function kernels and OAA multiclass SVM with hybrid kernels. The proposed ensemble classifier achieves better performance than the other two ensemble classifiers. Originality/value – The current paper performs emotion classification with an ensemble majority voting classifier that combines three certain types of base classifiers which are of low computational complexity. The base classifiers stem from different theoretical background to avoid bias and redundancy. It gives to the proposed ensemble classifier the ability to be generalized in the emotion domain space. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Systems and Information Technology Emerald Publishing

Ensemble majority voting classifier for speech emotion recognition and prediction

Loading next page...
 
/lp/emerald-publishing/ensemble-majority-voting-classifier-for-speech-emotion-recognition-and-TeuemQs070
Publisher
Emerald Publishing
Copyright
Copyright © 2014 Emerald Group Publishing Limited. All rights reserved.
ISSN
1328-7265
DOI
10.1108/JSIT-01-2014-0009
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to understand the emotional state of a human being by capturing the speech utterances that are used during common conversation. Human beings except of thinking creatures are also sentimental and emotional organisms. There are six universal basic emotions plus a neutral emotion: happiness, surprise, fear, sadness, anger, disgust and neutral. Design/methodology/approach – It is proved that, given enough acoustic evidence, the emotional state of a person can be classified by an ensemble majority voting classifier. The proposed ensemble classifier is constructed over three base classifiers: k nearest neighbors, C4.5 and support vector machine (SVM) polynomial kernel. Findings – The proposed ensemble classifier achieves better performance than each base classifier. It is compared with two other ensemble classifiers: one‐against‐all (OAA) multiclass SVM with radial basis function kernels and OAA multiclass SVM with hybrid kernels. The proposed ensemble classifier achieves better performance than the other two ensemble classifiers. Originality/value – The current paper performs emotion classification with an ensemble majority voting classifier that combines three certain types of base classifiers which are of low computational complexity. The base classifiers stem from different theoretical background to avoid bias and redundancy. It gives to the proposed ensemble classifier the ability to be generalized in the emotion domain space.

Journal

Journal of Systems and Information TechnologyEmerald Publishing

Published: Aug 5, 2014

Keywords: Speech emotion recognition; Affective computing; Machine learning

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off