Access the full text.
Sign up today, get DeepDyve free for 14 days.
Investigates numerically the mechanism of enhancing heat transfer by using porous substrate. The numerical investigation is carried out for transient forced convection in the developing region of a parallel‐plate channel partially filled with a porous medium. A porous substrate is inserted in the channel core in order to reduce the boundary layer thickness and hence, enhance heat transfer. Darcy‐Brinkman‐Forchheimer model is used to simulate the physical problem. Results of the current model show that the existence of the porous substrate may improve the Nusselt number at the fully developed region by a factor of four and even higher depending on the value of Darcy number. It is found that the maximum Nusselt number is achieved at an optimum thickness. Also, the study shows that partially filled channels have better thermal performance than the totally filled ones. However, there is an optimum thickness of porous substrate, beyond it the Nusselt number starts to decline.
International Journal of Numerical Methods for Heat & Fluid Flow – Emerald Publishing
Published: Aug 1, 2000
Keywords: Forced convection; Porous media
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.