Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeThe purpose of this paper is to present an empirical study on the effect of two synthetic attributes to popular classification algorithms on data originating from student transcripts. The attributes represent past performance achievements in a course, which are defined as global performance (GP) and local performance (LP). GP of a course is an aggregated performance achieved by all students who have taken this course, and LP of a course is an aggregated performance achieved in the prerequisite courses by the student taking the course.Design/methodology/approachThe paper uses Educational Data Mining techniques to predict student performance in courses, where it identifies the relevant attributes that are the most key influencers for predicting the final grade (performance) and reports the effect of the two suggested attributes on the classification algorithms. As a research paradigm, the paper follows Cross-Industry Standard Process for Data Mining using RapidMiner Studio software tool. Six classification algorithms are experimented: C4.5 and CART Decision Trees, Naive Bayes, k-neighboring, rule-based induction and support vector machines.FindingsThe outcomes of the paper show that the synthetic attributes have positively improved the performance of the classification algorithms, and also they have been highly ranked according to their influence to the target variable.Originality/valueThis paper proposes two synthetic attributes that are integrated into real data set. The key motivation is to improve the quality of the data and make classification algorithms perform better. The paper also presents empirical results showing the effect of these attributes on selected classification algorithms.
International Journal of Intelligent Computing and Cybernetics – Emerald Publishing
Published: Jun 12, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.