Empirical evidence of deep learning in learning communities

Empirical evidence of deep learning in learning communities PurposeThe purpose of this paper is to investigate whether learning communities (LCs), defined as a cohort of students jointly enrolled in two distinct courses, increase “deep learning” in either or both courses. This study focuses on the impact of learning communities in quantitative courses.Design/methodology/approachThe hypothesis is tested using a unique data set including individual student performance and characteristics collected from students enrolled in an LC of Principles of Microeconomics and Elementary Statistics. The sample also includes students enrolled in each course separately which allows for testing between groups. The final exam in each course contained questions designed specifically to test deep learning. The design facilitates the use of multivariate regression analysis to examine the correlation between learning in communities and deep learning, holding constant other possible elements of student success.FindingsDespite perceptions among the sample student population that learning increases in both courses as a result of the LC format, the empirical evidence does not reveal any statistically significant increase in deep learning as a result of learning in community. However, the sample is more introverted than the average college student which may meaningfully impact the results.Research limitations/implicationsThere are a number of important motivations for implementing an LC program that are not measured here. These include an increased sense of community among students, breadth (rather than depth) of knowledge, and awareness of the interconnectedness of learning across disciplines. However, to the extent that university instructors are motivated to ensure learning in their own discipline, this resource-intensive strategy may not be the most suitable approach in quantitative courses.Originality/valueLearning communities continue to be a popular pedagogical technique and curriculum requirement, particularly at teaching-focused universities. This research offers an empirical approach to measuring one aspect of their value which is typically left to conceptual or qualitative study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Research in Higher Education Emerald Publishing

Empirical evidence of deep learning in learning communities

Loading next page...
 
/lp/emerald-publishing/empirical-evidence-of-deep-learning-in-learning-communities-OpXJN7STEU
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2050-7003
DOI
10.1108/JARHE-11-2017-0141
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to investigate whether learning communities (LCs), defined as a cohort of students jointly enrolled in two distinct courses, increase “deep learning” in either or both courses. This study focuses on the impact of learning communities in quantitative courses.Design/methodology/approachThe hypothesis is tested using a unique data set including individual student performance and characteristics collected from students enrolled in an LC of Principles of Microeconomics and Elementary Statistics. The sample also includes students enrolled in each course separately which allows for testing between groups. The final exam in each course contained questions designed specifically to test deep learning. The design facilitates the use of multivariate regression analysis to examine the correlation between learning in communities and deep learning, holding constant other possible elements of student success.FindingsDespite perceptions among the sample student population that learning increases in both courses as a result of the LC format, the empirical evidence does not reveal any statistically significant increase in deep learning as a result of learning in community. However, the sample is more introverted than the average college student which may meaningfully impact the results.Research limitations/implicationsThere are a number of important motivations for implementing an LC program that are not measured here. These include an increased sense of community among students, breadth (rather than depth) of knowledge, and awareness of the interconnectedness of learning across disciplines. However, to the extent that university instructors are motivated to ensure learning in their own discipline, this resource-intensive strategy may not be the most suitable approach in quantitative courses.Originality/valueLearning communities continue to be a popular pedagogical technique and curriculum requirement, particularly at teaching-focused universities. This research offers an empirical approach to measuring one aspect of their value which is typically left to conceptual or qualitative study.

Journal

Journal of Applied Research in Higher EducationEmerald Publishing

Published: Jul 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month