Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – This paper aims to investigate the protection efficiency of a thin film of electrochemically synthesized conducting polymers, such as poly m‐toluidine, poly N‐methyl aniline, and its copolymer, poly (aniline‐co‐N‐methyl aniline) (PANINMA), on plain carbon steel in 0.1 M HCl. It also attempts to compare the protection efficiency of these compounds with polyaniline (PANI)‐coated carbon steel. Design/methodology/approach – The green coloured and adherent coatings were obtained by cyclic voltammetry during sequential scanning of the potential region between −0.6 and 1.6 V at a scan rate of 10 mVs −1 . Potentiodynamic polarization measurement (DC) was used to obtain an estimate of the corrosion rate and protection efficiency for these electrodeposited polymers on the carbon steel. Scanning electron micrographs (SEM) also were obtained to characterize the deposited coatings. Findings – It was observed that these polymer coatings showed better protection efficiency than the PANI coating. Of the compounds studied, the copolymer PANINMA coating showed higher protection efficiency than other coatings. The SEM observations revealed that the compact continuous dense morphology of PANINMA provided better protection than other coatings. Originality/value – This paper explains the protection efficiency of the substituted and copolymer coatings of PANI on carbon steel.
Anti-Corrosion Methods and Materials – Emerald Publishing
Published: Jan 11, 2008
Keywords: Corrosion protection; Polymers; Coatings; Steels
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.