Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation

Efficient design optimization of variable-density cellular structures for additive manufacturing:... PurposeThe purpose of the paper is to propose a homogenization-based topology optimization method to optimize the design of variable-density cellular structure, in order to achieve lightweight design and overcome some of the manufacturability issues in additive manufacturing.Design/methodology/approachFirst, homogenization is performed to capture the effective mechanical properties of cellular structures through the scaling law as a function their relative density. Second, the scaling law is used directly in the topology optimization algorithm to compute the optimal density distribution for the part being optimized. Third, a new technique is presented to reconstruct the computer-aided design (CAD) model of the optimal variable-density cellular structure. The proposed method is validated by comparing the results obtained through homogenized model, full-scale simulation and experimentally testing the optimized parts after being additive manufactured.FindingsThe test examples demonstrate that the homogenization-based method is efficient, accurate and is able to produce manufacturable designs.Originality/valueThe optimized designs in our examples also show significant increase in stiffness and strength when compared to the original designs with identical overall weight. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rapid Prototyping Journal Emerald Publishing

Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation

Loading next page...
 
/lp/emerald-publishing/efficient-design-optimization-of-variable-density-cellular-structures-lvNcLyK4lA
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1355-2546
DOI
10.1108/RPJ-04-2016-0069
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of the paper is to propose a homogenization-based topology optimization method to optimize the design of variable-density cellular structure, in order to achieve lightweight design and overcome some of the manufacturability issues in additive manufacturing.Design/methodology/approachFirst, homogenization is performed to capture the effective mechanical properties of cellular structures through the scaling law as a function their relative density. Second, the scaling law is used directly in the topology optimization algorithm to compute the optimal density distribution for the part being optimized. Third, a new technique is presented to reconstruct the computer-aided design (CAD) model of the optimal variable-density cellular structure. The proposed method is validated by comparing the results obtained through homogenized model, full-scale simulation and experimentally testing the optimized parts after being additive manufactured.FindingsThe test examples demonstrate that the homogenization-based method is efficient, accurate and is able to produce manufacturable designs.Originality/valueThe optimized designs in our examples also show significant increase in stiffness and strength when compared to the original designs with identical overall weight.

Journal

Rapid Prototyping JournalEmerald Publishing

Published: Jun 20, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off