Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Efficient computational models for shallow water flows over multilayer erodible beds

Efficient computational models for shallow water flows over multilayer erodible beds PurposeThe purpose of this paper is to present a new numerical model for shallow water flows over heterogeneous sedimentary layers. It is already several years since the single-layered models have been used to model shallow water flows over erodible beds. Although such models present a real opportunity for shallow water flows over movable beds, this paper is the first to propose a multilayered solver for this class of flow problems.Design/methodology/approachMultilayered beds formed with different erodible soils are considered in this study. The governing equations consist of the well-established shallow water equations for the flow, a transport equation for the suspended sediments, an Exner-type equation for the bed load and a set of empirical equations for erosion and deposition terms. For the numerical solution of the coupled system, the authors consider a non-homogeneous Riemann solver equipped with interface-tracking tools to resolve discontinuous soil properties in the multilayered bed. The solver consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms.FindingsThis paper reveals that modeling shallow water flows over multilayered sedimentary topography can be achieved by using a coupled system of partial differential equations governing sediment transport. The obtained results demonstrate that the proposed numerical model preserves the conservation property, and it provides accurate results, avoiding numerical oscillations and numerical dissipation in the approximated solutions.Originality/valueA novel implementation of sediment handling is presented where both averaged and separate values for sediment species are used to ensure speed and precision in the simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Efficient computational models for shallow water flows over multilayer erodible beds

Engineering Computations , Volume 37 (2): 29 – Jan 1, 1

Loading next page...
 
/lp/emerald-publishing/efficient-computational-models-for-shallow-water-flows-over-multilayer-ozxLOasfa4
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0264-4401
DOI
10.1108/ec-10-2018-0470
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to present a new numerical model for shallow water flows over heterogeneous sedimentary layers. It is already several years since the single-layered models have been used to model shallow water flows over erodible beds. Although such models present a real opportunity for shallow water flows over movable beds, this paper is the first to propose a multilayered solver for this class of flow problems.Design/methodology/approachMultilayered beds formed with different erodible soils are considered in this study. The governing equations consist of the well-established shallow water equations for the flow, a transport equation for the suspended sediments, an Exner-type equation for the bed load and a set of empirical equations for erosion and deposition terms. For the numerical solution of the coupled system, the authors consider a non-homogeneous Riemann solver equipped with interface-tracking tools to resolve discontinuous soil properties in the multilayered bed. The solver consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms.FindingsThis paper reveals that modeling shallow water flows over multilayered sedimentary topography can be achieved by using a coupled system of partial differential equations governing sediment transport. The obtained results demonstrate that the proposed numerical model preserves the conservation property, and it provides accurate results, avoiding numerical oscillations and numerical dissipation in the approximated solutions.Originality/valueA novel implementation of sediment handling is presented where both averaged and separate values for sediment species are used to ensure speed and precision in the simulations.

Journal

Engineering ComputationsEmerald Publishing

Published: Jan 1, 1

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month