Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to propose an efficient method to conduct the preliminary analyses of medium or high-rise wall-frame structural systems with vertically varying properties. To this end, a finite element is formulated to take the shear deformation of the shear wall and the constrained moment of the link beam.Design/methodology/approachThe differential equation of the structure is derived from the total potential energy. Its homogenous solutions are functions of initial parameters (deflections and inner forces). To solve the structure with vertically non-uniform properties, the authors first use the classical Timoshenko beam element and then heuristically propose a finite element that uses the initial parameter solutions as shape functions and is easier to implement. A post-processing method to compute the shear force in the frame and shear wall is developed. Modal analysis using the consistent mass matrix is also incorporated. Numerical examples demonstrate the accuracy and mesh independency of the proposed element.FindingsThe shear deformation of the shear wall and the constrained moment of the link beam significantly influence the static response of the structure. Taking into account the shear deformation can eliminate the misleading result of zero-base shear force of the frame and give much better predictions of the system natural frequencies.Originality/valueThe proposed method achieves higher accuracy than the classical approach most often used. The finite element formulation derived from transformations of the initial parameter solutions is simple and has superior numerical performance. The post-processing method allows for a fast determination of the shear force distributions in the shear wall and frame.
Engineering Computations – Emerald Publishing
Published: Aug 15, 2019
Keywords: Finite element method; Modal analysis; Link beam; Shear deformation; Shear wall-frame system
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.