Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeAdditive manufacturing (AM), a method used in the nuclear, space and racing industries, allows the creation of customized titanium alloy scaffolds with highly defined external shape and internal structure using rapid prototyping as supporting external structures within which bone tissue can grow. AM allows porous tantalum parts with mechanical properties close to that of bone tissue to be obtained.Design/methodology/approachIn this paper, porous tantalum structures with different scan distance were fabricated by AM using laser multi-layer micro-cladding.FindingsPorous tantalum samples were tested for resistance to compressive force and used scanning electron microscope to reveal the morphology of before and after compressive tests. Their structure and mechanical properties of these porous Ta structures with porosity in the range of 35.48 to 50 per cent were investigated. The porous tantalum structures have comparable compressive strength 56 ∼ 480 MPa, and elastic modulus 2.8 ∼ 9.0GPa, which is very close to those of human spongy bone and compact bone.Research limitations/implicationsThis paper does not demonstrate the implant results.Practical implicationsIt can be used as implant material for the repair bone.Social implicationsIt can be used for fabrication of other porous materials.Originality/valueThis paper system researched the scan distance on how to influence the mechanical properties of fabricated porous tantalum structures.
Rapid Prototyping Journal – Emerald Publishing
Published: Jun 20, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.