Economic impact of electrostatic precipitators pulse energization on dedusting in iron‐ore sintering plants

Economic impact of electrostatic precipitators pulse energization on dedusting in iron‐ore... Investigates the application of the up‐flow anaerobic sludge bed (UASB) reactor for the anaerobic treatment of sewage sludge containing high concentrations of soluble and insoluble sulphides. Assesses the reactor’s performance in terms of volatile organic matter (VOM) and biogas production rate. The average percentage removal of VOM, total sulphide and biogas for the reactor operation without sulphide was 67 per cent, 65mgS/L and 1 L/day, respectively. The corresponding average percentage removal of VOM, total sulphide and biogas production rate for the experiment with 800mgS/L soluble sulphide was 45 per cent, 450mgS/L and 0.7L/day. Equilibrium concentrations of soluble sulphide up to 200mgS/L exert insignificant toxic effects, but toxicity increases as the concentration of soluble sulphide increases. A concentration of soluble sulphide of 1,200mgS/L produces severe toxic effects and the complete termination of gas production. An inhibitory concentration of sulphides affects gas production first, while significant volatile acid accumulation takes place much slower, and only after gas production has been severely retarded. Insoluble sulphide has an insignificant effect on the UASB up to a concentration of at least 800mgS/L. The addition of iron as ferric chloride prevents the toxicity of soluble sulphides as indicated by the minor effect on gas production. Therefore, the use of iron to precipitate sulphide could be used on a continuous basis to reduce sulphide toxicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Management and Health Emerald Publishing

Economic impact of electrostatic precipitators pulse energization on dedusting in iron‐ore sintering plants

Loading next page...
 
/lp/emerald-publishing/economic-impact-of-electrostatic-precipitators-pulse-energization-on-JDhCMn7063
Publisher
Emerald Publishing
Copyright
Copyright © 1996 MCB UP Ltd. All rights reserved.
ISSN
0956-6163
DOI
10.1108/09566169610130386
Publisher site
See Article on Publisher Site

Abstract

Investigates the application of the up‐flow anaerobic sludge bed (UASB) reactor for the anaerobic treatment of sewage sludge containing high concentrations of soluble and insoluble sulphides. Assesses the reactor’s performance in terms of volatile organic matter (VOM) and biogas production rate. The average percentage removal of VOM, total sulphide and biogas for the reactor operation without sulphide was 67 per cent, 65mgS/L and 1 L/day, respectively. The corresponding average percentage removal of VOM, total sulphide and biogas production rate for the experiment with 800mgS/L soluble sulphide was 45 per cent, 450mgS/L and 0.7L/day. Equilibrium concentrations of soluble sulphide up to 200mgS/L exert insignificant toxic effects, but toxicity increases as the concentration of soluble sulphide increases. A concentration of soluble sulphide of 1,200mgS/L produces severe toxic effects and the complete termination of gas production. An inhibitory concentration of sulphides affects gas production first, while significant volatile acid accumulation takes place much slower, and only after gas production has been severely retarded. Insoluble sulphide has an insignificant effect on the UASB up to a concentration of at least 800mgS/L. The addition of iron as ferric chloride prevents the toxicity of soluble sulphides as indicated by the minor effect on gas production. Therefore, the use of iron to precipitate sulphide could be used on a continuous basis to reduce sulphide toxicity.

Journal

Environmental Management and HealthEmerald Publishing

Published: Dec 1, 1996

Keywords: Anaerobic treatment; Performance monitoring; Sewage; Toxicity

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off