Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Dynamic stability of viscoelastic plates under axial flow by differential quadrature method

Dynamic stability of viscoelastic plates under axial flow by differential quadrature method PurposeCantilever plates subject to axial flow can lose stability by flutter and properties such as viscoelasticity and laminar friction affect dynamic stability. The purpose of the present study is to investigate the dynamic stability of viscoelastic cantilever plates subject to axial flow by using the differential quadrature method.Design/methodology/approachEquation of motion of the viscoelastic plate is derived by implementing Kelvin-Voigt model of viscoelasticity and applying inverse Laplace transformation. The differential quadrature method is employed to discretize the equation of motion and the boundary conditions leading to a generalized eigenvalue problem. The solution is verified using the existing results in the literature and numerical results are given for critical flow velocitiesFindingsIt is observed that higher aspect ratios lead to imaginary part of third frequency becoming negative and causing single-mode flutter instability. It was found that flutter instability does not occur at low aspect ratios. Moreover the friction coefficient is found to affect the magnitude of critical flow velocity, however, its effect on the stability behaviour is minor.Originality/valueThe effects of various problem parameters on the dynamic stability of a viscoelastic plate subject to axial flow were established. It was shown that laminar friction coefficient of the flowing fluid increases the critical fluid velocity and higher aspect ratios lead to single-mode flutter instability. The effect of increasing damping of viscoelastic material on the flutter instability was quantified and it was found that increasing viscoelasticity can lead to divergence instability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Dynamic stability of viscoelastic plates under axial flow by differential quadrature method

Loading next page...
 
/lp/emerald-publishing/dynamic-stability-of-viscoelastic-plates-under-axial-flow-by-FwAveLYusb
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0264-4401
DOI
10.1108/EC-03-2016-0113
Publisher site
See Article on Publisher Site

Abstract

PurposeCantilever plates subject to axial flow can lose stability by flutter and properties such as viscoelasticity and laminar friction affect dynamic stability. The purpose of the present study is to investigate the dynamic stability of viscoelastic cantilever plates subject to axial flow by using the differential quadrature method.Design/methodology/approachEquation of motion of the viscoelastic plate is derived by implementing Kelvin-Voigt model of viscoelasticity and applying inverse Laplace transformation. The differential quadrature method is employed to discretize the equation of motion and the boundary conditions leading to a generalized eigenvalue problem. The solution is verified using the existing results in the literature and numerical results are given for critical flow velocitiesFindingsIt is observed that higher aspect ratios lead to imaginary part of third frequency becoming negative and causing single-mode flutter instability. It was found that flutter instability does not occur at low aspect ratios. Moreover the friction coefficient is found to affect the magnitude of critical flow velocity, however, its effect on the stability behaviour is minor.Originality/valueThe effects of various problem parameters on the dynamic stability of a viscoelastic plate subject to axial flow were established. It was shown that laminar friction coefficient of the flowing fluid increases the critical fluid velocity and higher aspect ratios lead to single-mode flutter instability. The effect of increasing damping of viscoelastic material on the flutter instability was quantified and it was found that increasing viscoelasticity can lead to divergence instability.

Journal

Engineering ComputationsEmerald Publishing

Published: Jun 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month