Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Dynamic performance of the novel axial flux-switching permanent magnet motor

Dynamic performance of the novel axial flux-switching permanent magnet motor PurposeThe purpose of this paper is to investigate a novel axial flux-switching motor with sandwiched permanent magnet for direct drive electric vehicles (EVs), in which the torque density is increased and the cogging torque is decreased. For reducing the back-electromotive force (EMF) harmonics and cogging torque, a twisted structure is employed. To improve the dynamic performance of the axial field flux-switching sandwiched permanent magnet (AFFSSPM) motor a space vector modulation-direct torque and flux control scheme is proposed.Design/methodology/approachA multi-objective optimization is performed by means of artificial neural network and non-sorting genetic algorithm II to minimize the cogging torque while preserving the average torque.FindingsA comparative study between two proposed machines and the conventional flux-switching permanent magnet (FSPM) machine is accomplished and the static electromagnetic characteristics are analyzed. It is demonstrated that the proposed model with twisted structure has significantly improved performance over the conventional FSPM machine in back-EMF and efficiency. The proposed controller has a speed loop only and contains neither the current loop nor hysteresis control. The AFFSSPM motor exhibits excellent dynamic performance with this scheme.Originality valueThe axial flux-switching permanent-magnet machine is one of the most efficient machines but the AFFSSPM with sandwiched permanent magnet has not been specially reported to date. Thus in this paper, the authors report on optimal design of an axial flux-switching sandwiched permanent magnet machine for electric vehicles and investigate its dynamic performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/dynamic-performance-of-the-novel-axial-flux-switching-permanent-magnet-Eac1jcSfCq
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0332-1649
DOI
10.1108/COMPEL-07-2016-0310
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to investigate a novel axial flux-switching motor with sandwiched permanent magnet for direct drive electric vehicles (EVs), in which the torque density is increased and the cogging torque is decreased. For reducing the back-electromotive force (EMF) harmonics and cogging torque, a twisted structure is employed. To improve the dynamic performance of the axial field flux-switching sandwiched permanent magnet (AFFSSPM) motor a space vector modulation-direct torque and flux control scheme is proposed.Design/methodology/approachA multi-objective optimization is performed by means of artificial neural network and non-sorting genetic algorithm II to minimize the cogging torque while preserving the average torque.FindingsA comparative study between two proposed machines and the conventional flux-switching permanent magnet (FSPM) machine is accomplished and the static electromagnetic characteristics are analyzed. It is demonstrated that the proposed model with twisted structure has significantly improved performance over the conventional FSPM machine in back-EMF and efficiency. The proposed controller has a speed loop only and contains neither the current loop nor hysteresis control. The AFFSSPM motor exhibits excellent dynamic performance with this scheme.Originality valueThe axial flux-switching permanent-magnet machine is one of the most efficient machines but the AFFSSPM with sandwiched permanent magnet has not been specially reported to date. Thus in this paper, the authors report on optimal design of an axial flux-switching sandwiched permanent magnet machine for electric vehicles and investigate its dynamic performance.

Journal

COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Jul 3, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month